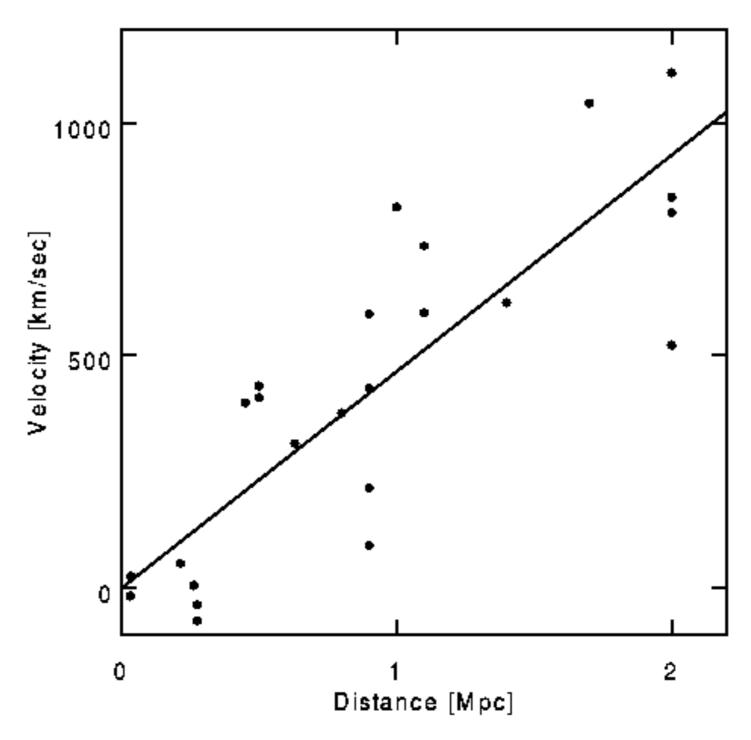
Particle Physics from Cosmology

Pedro G. Ferreira
University of Oxford

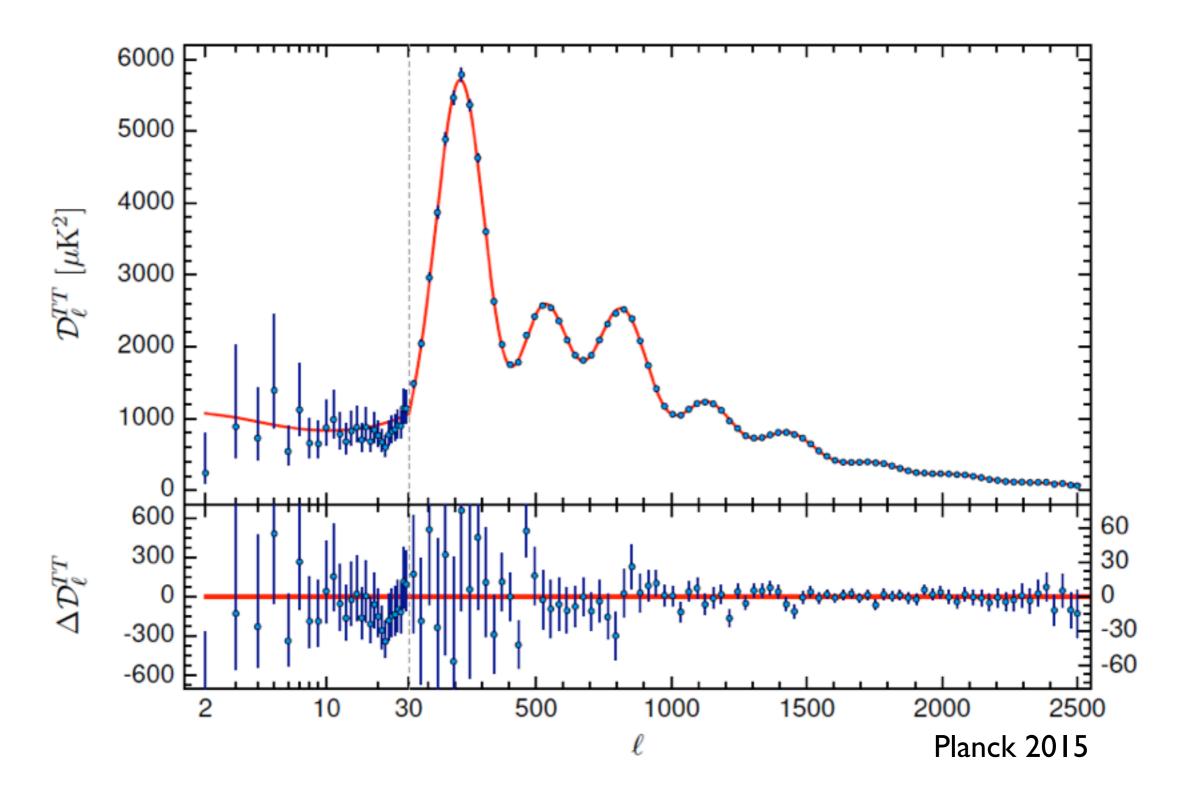
Erice 2015

Precision cosmology then ...

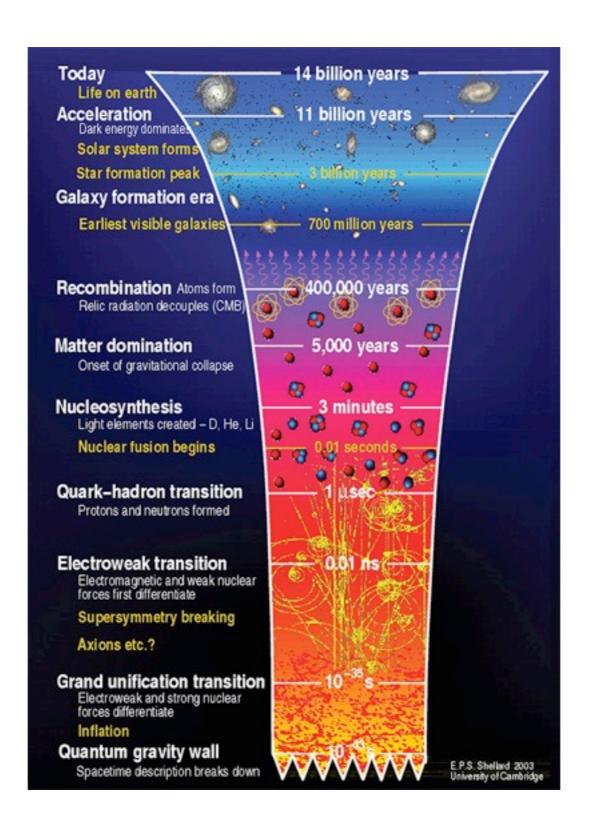


Hubble 1929

Precision cosmology now ...



The Universe as a particle accelerator



Desiderata for a particle physicist

- The inflationary era (what kind of fields, potentials, energy scales)
- Dark energy (what is it, what energy scales)
- Ultra-light fields (neutrinos, ultralight axions)
- The dark matter (what kind of dark matter particle, cross section)
- Gravity (what is it, precision tests)- next lecture

Outline

- The background
- Linear theory
- Inflation
- Dark energy
- Relativistic particles
- Inconsistencies

Background cosmology: FRW equations

$$ds^2 = -dt^2 + a^2(t)\gamma_{ij}dx^idx^j$$

$$\text{physical time} \qquad \text{metric of 3-space}$$

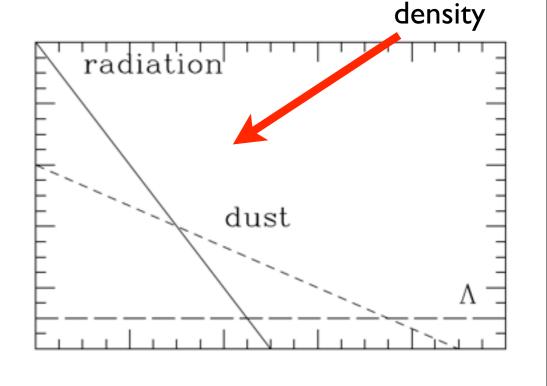
curvature of 3-space

$$G_{\alpha\beta} = 8\pi G T_{\alpha\beta} \longrightarrow H^2 \equiv \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - k$$

Conservation of energy-momentum

$$\nabla^{\mu}T_{\mu\nu} = 0$$

 $\log(\rho)$



Background cosmology: parameters

Hubble parameter

$$H^{2}(a) \equiv \left(\frac{\dot{a}}{a}\right)^{2} = H_{0}^{2} \left[\frac{\Omega_{M}}{a^{3}} + \frac{\Omega_{R}}{a^{4}} + \frac{\Omega_{K}}{a^{2}} + \frac{\Omega_{DE}}{a^{3(1+w)}}\right]$$

Critical density $\rho_c = 1.9 \times 10^{-26} h^2 \text{kgm}^{-3}$ $P_{DE} = w \rho_{DE}$

$$D_H = \frac{c}{H_0} = 3000 \ h^{-1} \text{ Mpc}$$
 $D_C = \int_t^{t_0} \frac{cdt'}{a(t')} = c \int_a^1 \frac{da}{a^2 H(a)}$

Luminosity distance: $D_L = (1+z) \left\{ egin{array}{ll} \frac{D_H}{\sqrt{\Omega_k}} \sinh[\sqrt{\Omega_k}D_C/D_H] & {\rm for} & \Omega_k > 0 \\ D_C & {\rm for} & \Omega_k = 0 \\ \frac{D_H}{\sqrt{|\Omega_k|}} \sin[\sqrt{|\Omega_k|}D_C/D_H] & {\rm for} & \Omega_k < 0 \end{array} \right.$

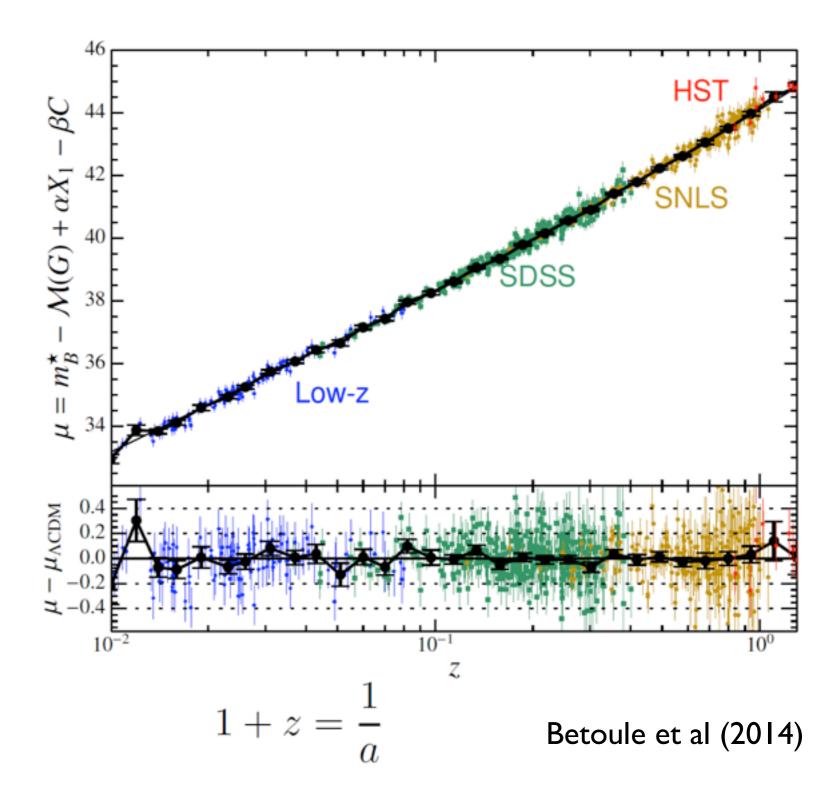
Angular diameter distance: $D_A = \frac{D_L}{(1+z)^2}$

Background cosmology: measure distances

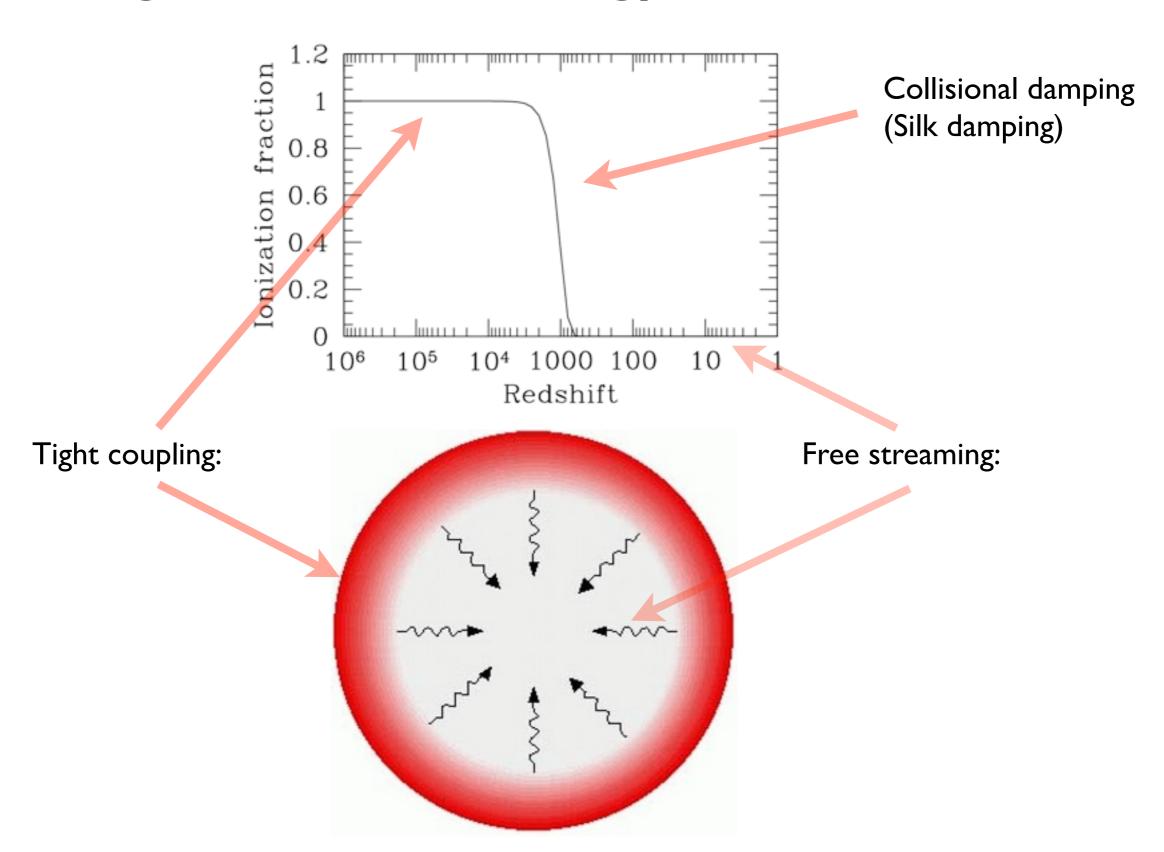
Measure $z, D_L(z)$

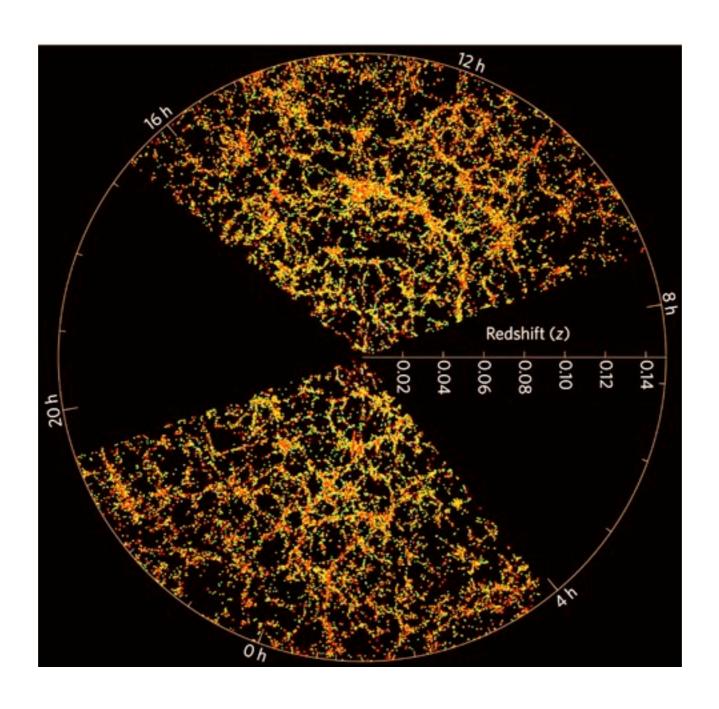
or $z,D_A(z)$

 $\mathcal{M} \propto -\log D_L$



Background cosmology: CMB





SDSS

Perturbed metric (in conformal time now)

$$ds^{2} = a^{2}(\tau) \left[-(1+2\Psi)d\tau^{2} + (1-2\Phi)q_{ij}dx^{i}dx^{j} \right]$$

Perturbed
Einstein field
equations

$$2(\Delta + 3\kappa)\Phi - 6\mathcal{H}(\Phi' + \mathcal{H}\Psi) = 8\pi G a^2 \sum_{i} \rho_i \delta_i$$
$$2(\Phi' + \mathcal{H}\Psi) = 8\pi G a^2 \sum_{i} (\rho_i + P_i)\theta_i$$

$$\Phi'' + \mathcal{H}\Psi' + 2\mathcal{H}\Phi' + \left(2\mathcal{H}' + \mathcal{H}^2 + \frac{1}{3}\Delta\right)\Psi - (\frac{1}{3}\Delta + \kappa)\Phi = 4\pi Ga^2\sum_i\delta P_i$$

$$\Phi - \Psi = 8\pi G a^2 \sum_{i} (\rho_i + P_i) \Sigma_i$$

Perturbed metric (in conformal time now)

$$ds^{2} = a^{2}(\tau) \left[-(1+2\Psi)d\tau^{2} + (1-\xi^{2}) \right]$$

Perturbed Einstein field equations

ric (in conformal time now)
$$(\tau) \left[-(1+2\Psi)d\tau^2 + (1-2) + (1-$$

$$2(\Phi' + \mathcal{H}\Psi) = 8\pi G a^2 \sum_{i} (\rho_i + P_i)\theta_i$$

$$\Phi'' + \left(2\mathcal{H}' + \mathcal{H}^2 + \frac{1}{3}\Delta\right)\Psi - (\frac{1}{3}\Delta + \kappa)\Phi = 4\pi Ga^2 \sum_i \delta P_i$$

$$\Phi - \Psi = 8\pi G a^2 \sum_{i} (\rho_i + P_i) \Sigma_i$$

Energy-momentum conservation (no shear):

$$\delta' = -(1+w)(\theta-3\Phi') - 3\mathcal{H}\left(\frac{\delta P}{\delta \rho} - w\right)\delta \qquad \delta(\mathbf{x}) = \frac{\rho(\mathbf{x}) - \bar{\rho}}{\bar{\rho}}$$
 density contrast
$$\theta' = -\mathcal{H}(1-3w)\theta - \frac{w'}{1+w}\theta + \frac{\delta P/\delta \rho}{1+w}k^2\delta + k^2\Psi$$

Examples:

dust:

$$\delta' = -(\theta - 3\Phi')$$

$$\theta' = -\mathcal{H}\theta + k^2\Psi$$

velocity divergence

radiation:

$$\delta' = -\frac{4}{3}(\theta - 3\Phi')$$

$$\theta' = +\frac{1}{4}k^2\delta + k^2\Psi$$

Aside: Newtonian theory

sound speed
$$\qquad \qquad \qquad c_s^2 = \frac{\nabla \delta P}{\nabla \delta \rho}$$

$$\delta_k'' + \frac{a'}{a}\delta_k' + (c_s^2k^2 - 4\pi G\rho a^2)\delta_k = 0$$
 expansion/dilution pressure/reaction gravity/collapse

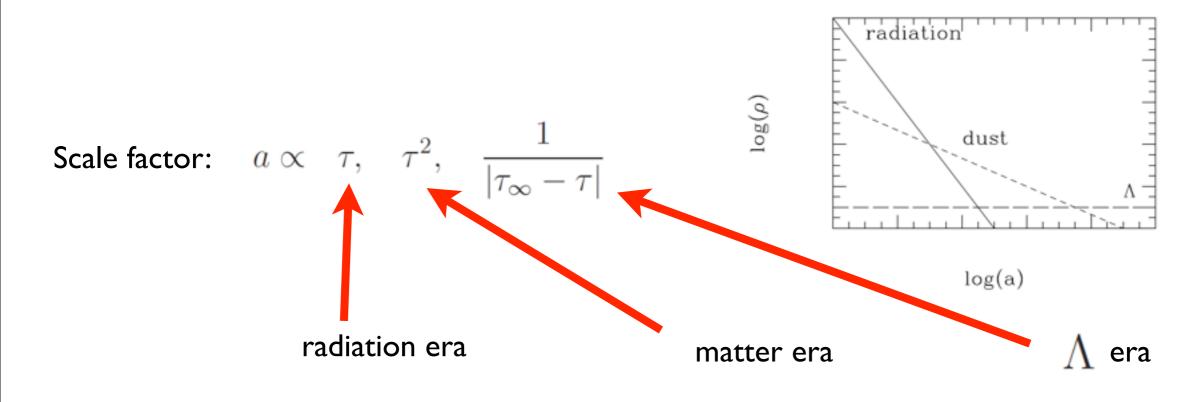
Jeans length:

$$\lambda_{J} = c_{s} \left(\frac{\pi}{G\rho_{0}}\right)^{\frac{1}{2}}$$

$$\lambda_{J} = \left(\frac{\pi K_{B}T}{GM\rho_{0}}\right)^{1/2}$$

$$c_{s}^{2} \sim (K_{B}T)/(M)$$

Linear Perturbations: evolution



dust:

$$\delta \propto \log \tau$$

$$\delta \propto \tau^2$$

$$\delta \propto {\rm constant}$$

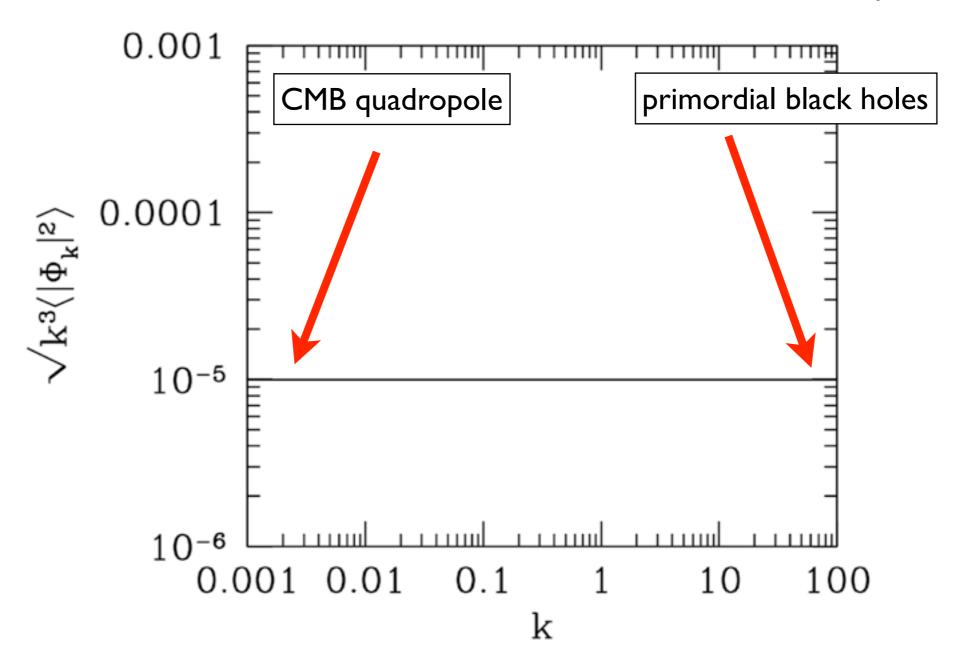
$$\delta \propto \frac{1}{\sqrt{k\tau}} \cos\left(\frac{k\tau}{\sqrt{3}}\right)$$

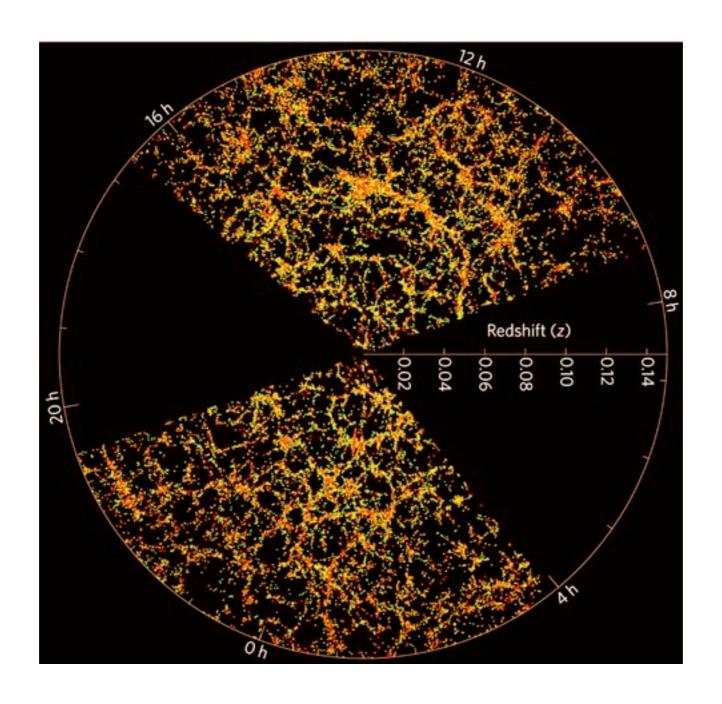
$$\delta \propto \tau^2$$

 $\delta \propto {\rm constant}$

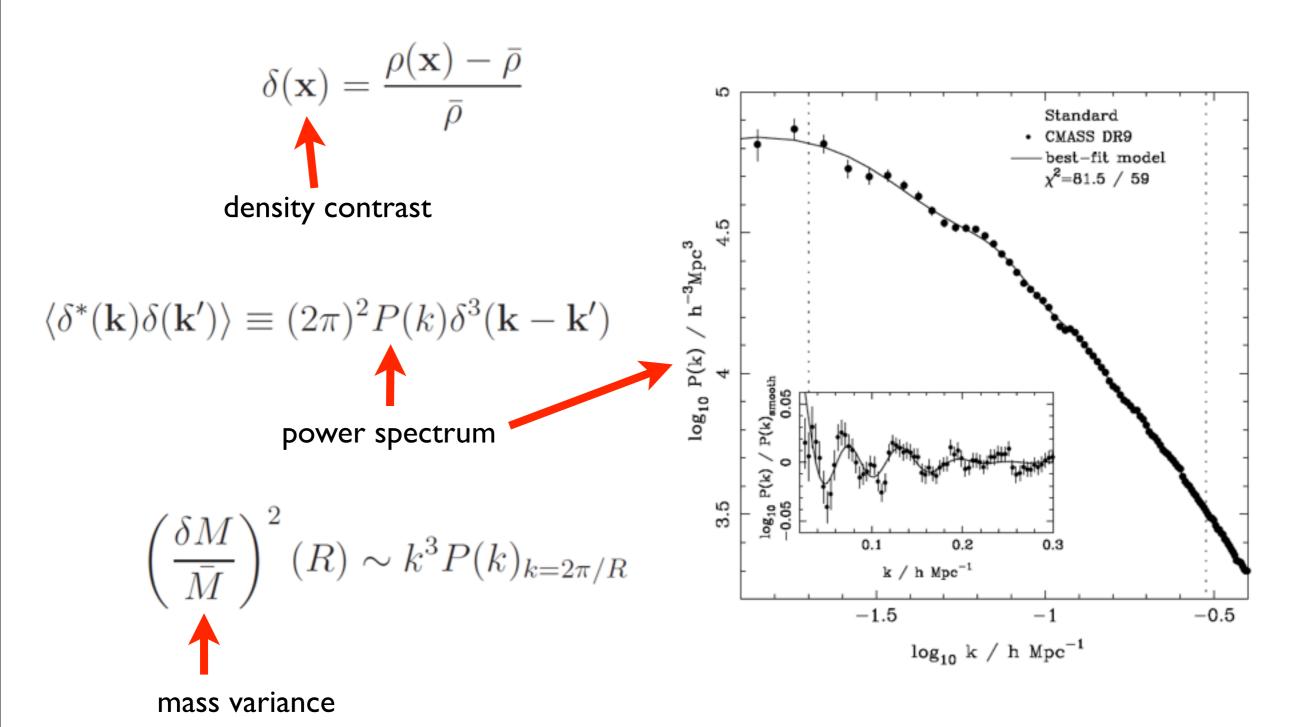
Linear Perturbations: initial conditions

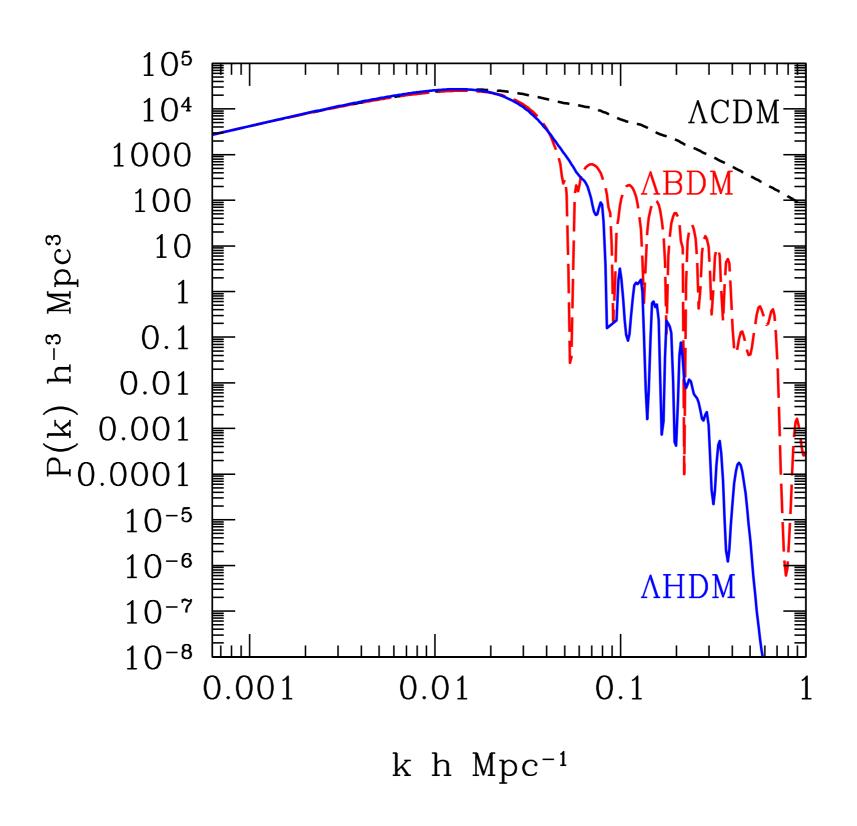
Peebles-Harrison-Zel'dovich spectrum (1970)





SDSS

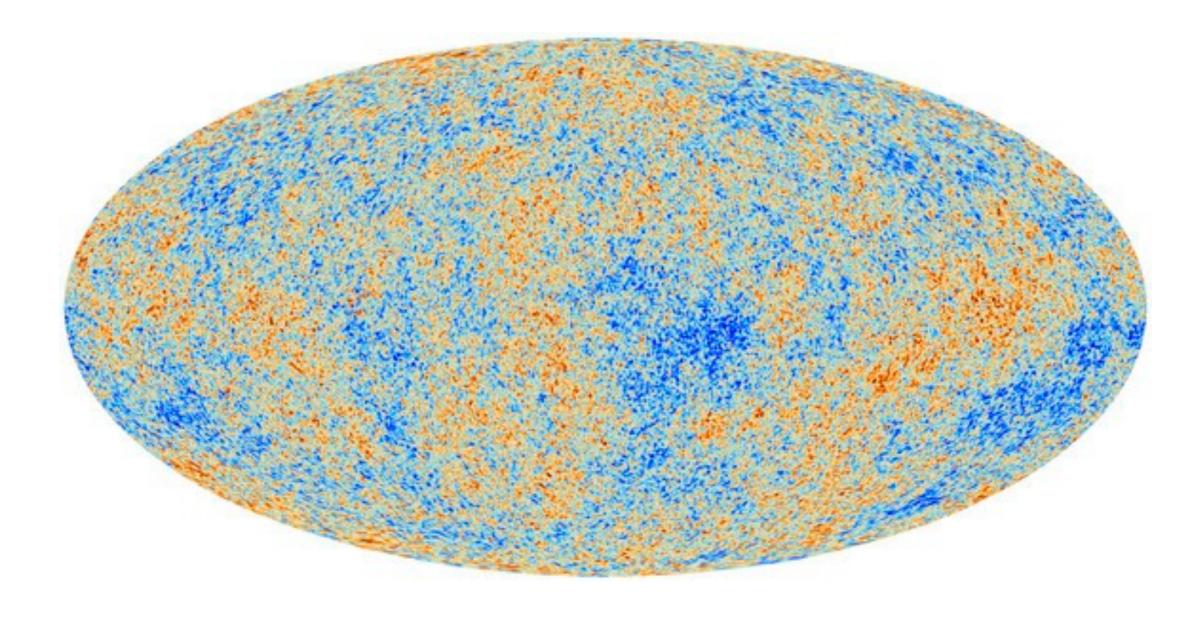




Large scale structure: CMB

Intrinisic
$$\rho_{\gamma} = \sigma T^4 \longrightarrow \frac{\delta T}{T} = \frac{1}{4} \frac{\delta \rho_{\gamma}}{\rho_{\gamma}}$$
 Doppler
$$\frac{\delta T}{T} = -\vec{v}_B \cdot \vec{n}$$
 Sachs-Wolfe
$$\frac{\delta T}{T} = -\Phi$$
 gravitational redshift
$$\frac{\delta T}{T} = -2 \int_{\tau_a}^{\tau_0} d\tau \Phi'$$

Large scale structure: CMB



Planck

Large scale structure: CMB

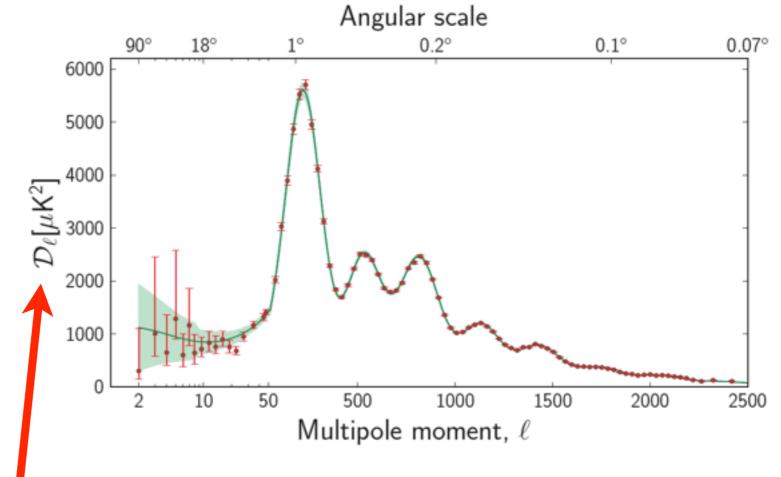
Angular power spectrum of the CMB

$$\frac{\delta T}{T}(\mathbf{n}) = \frac{T(\mathbf{n}) - \bar{T}}{\bar{T}}$$

CMB anisotropies

$$\frac{\delta T}{T}(\mathbf{n}) = \sum_{\ell m} a_{\ell m} Y_{\ell m}(\mathbf{n})$$

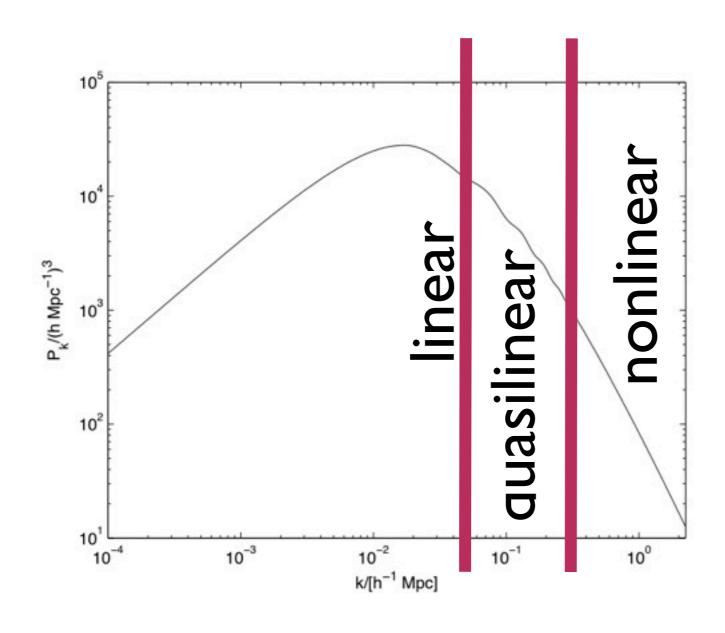
spherical harmonic transform

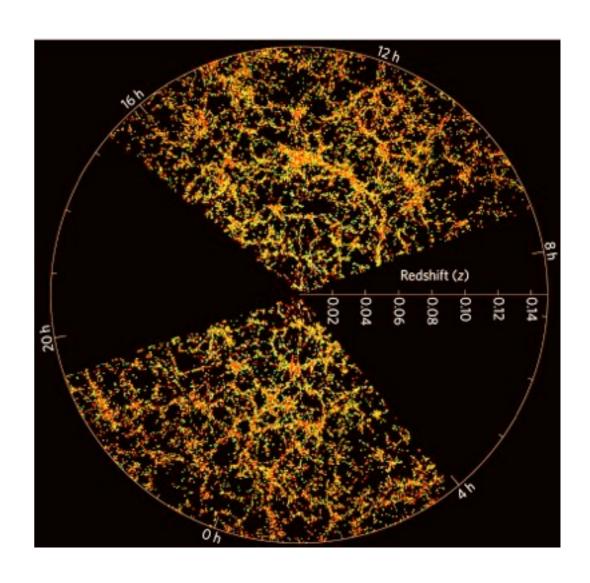


angular power spectrum $\longrightarrow \mathcal{D}_\ell = \frac{\ell(\ell)}{\ell}$

Planck 2013

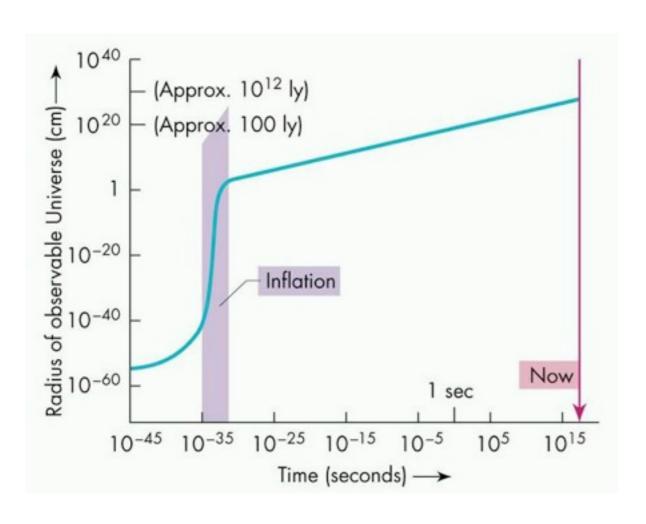
From linear to non-linear physics.

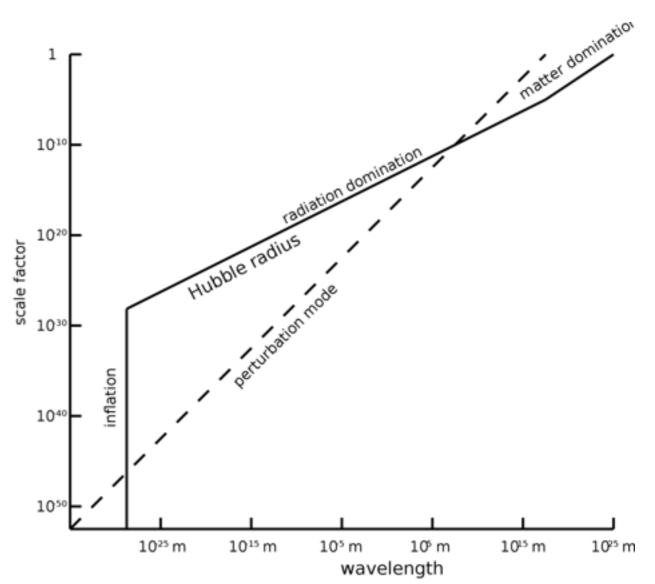




Inflation

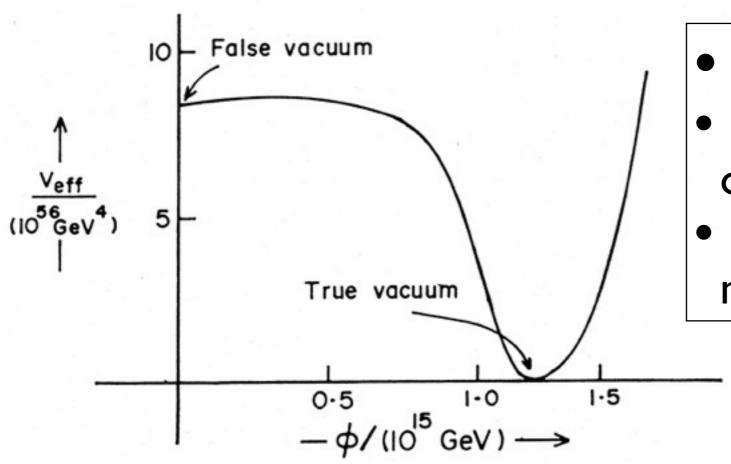
Inflation (1980)





http://www.astro.umass.edu/~myun

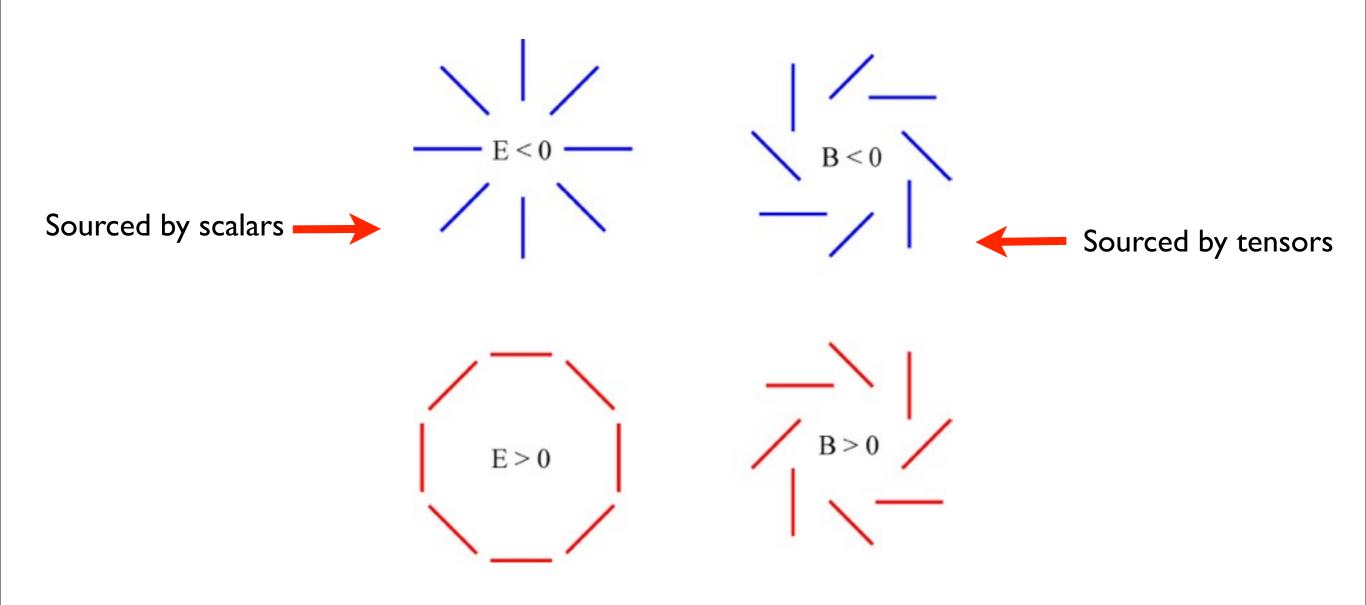
Cosmological scalar fields: $V(\phi) = \sum_{n} \lambda_n M^{4-n} \phi^n$

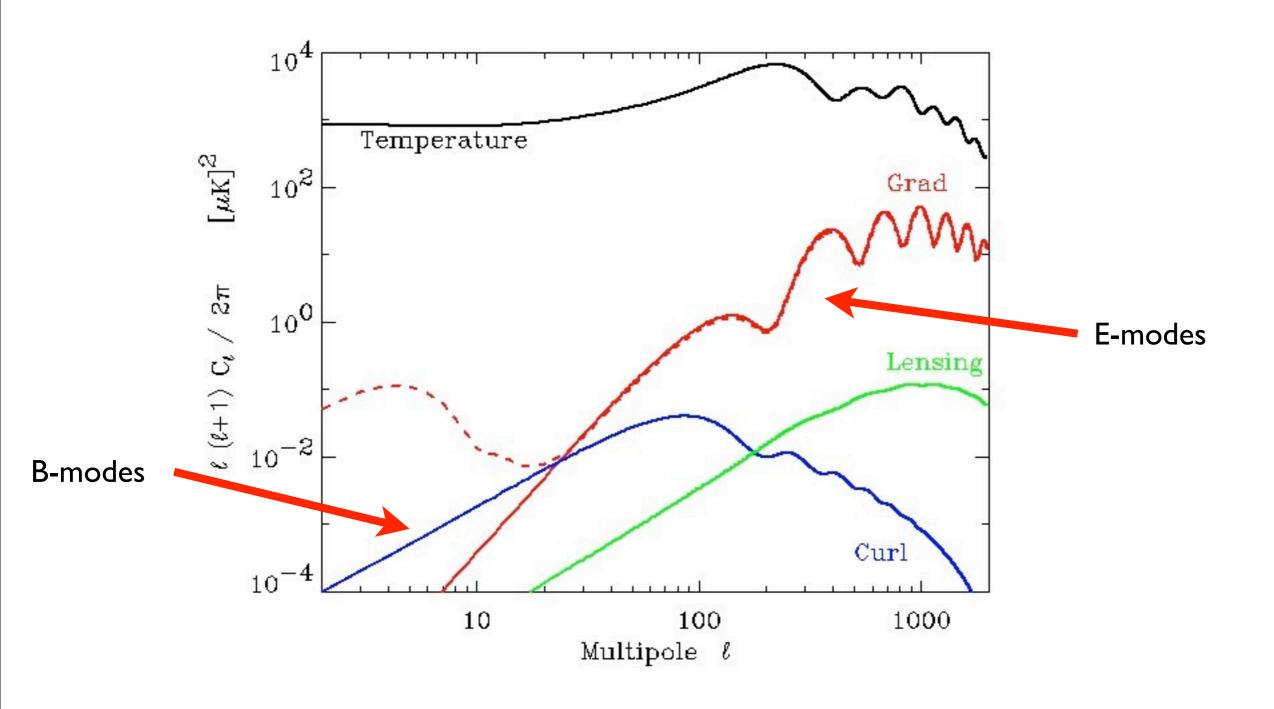


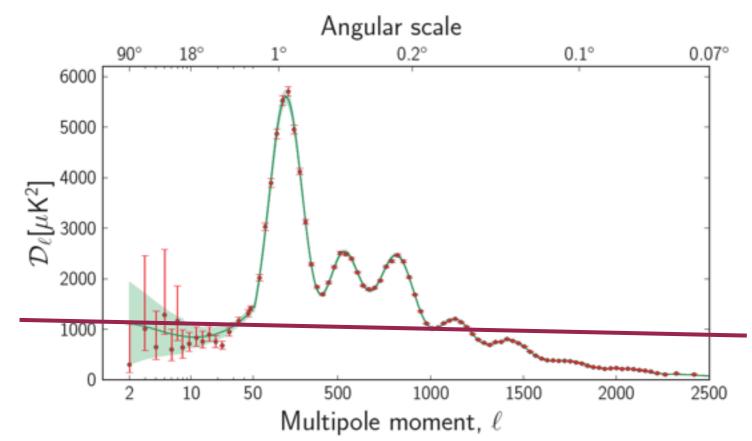
- Only 3 observables
- Constrain a very small piece of the potential
- Huge degeneracy between models

Energy scale of inflation $\longrightarrow E_{\rm inf} \equiv (3H^2M_{\rm pl}^2)^{1/4} = 8 \times 10^{-3} \left(\frac{r}{0.1}\right)^{1/4} M_{\rm pl}$

E and B modes of polarization







Primordial Tilt

Planck 2013

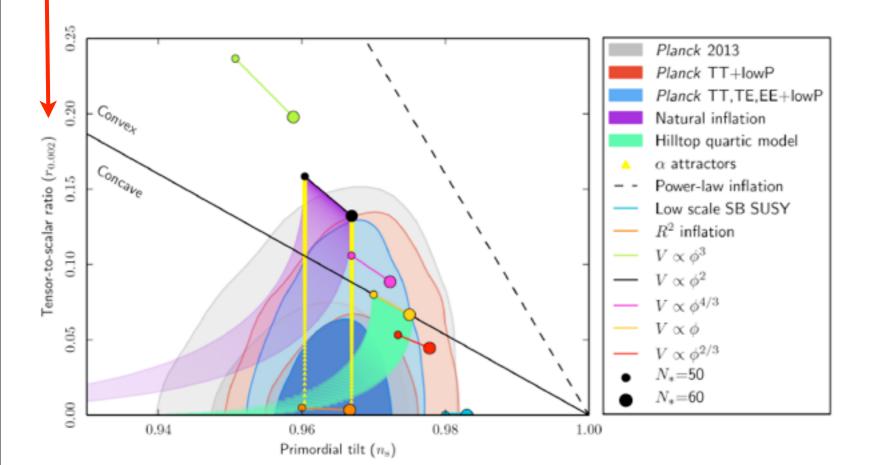
5-sigma away from scale invariance

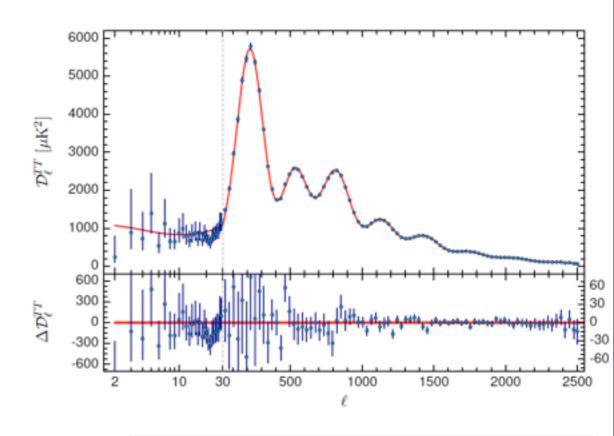
$$n_s = 0.9585 \pm 0.0070$$

No running of spectral tilt

$$\frac{dn_S}{d\ln k} = -0.014 \pm 0.009$$

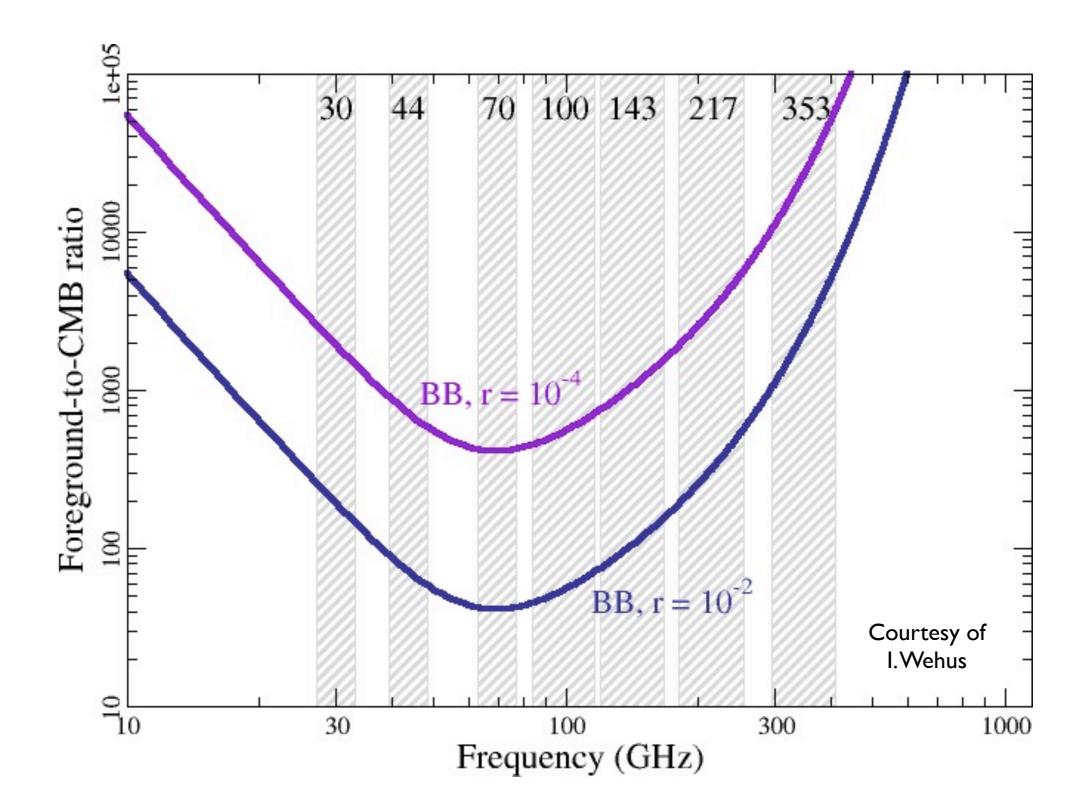
Upper bound on tensor modes





Inflationary model	$\Delta \chi^2$		$\ln B_{0x}$	
	$w_{\text{int}} = 0$	$w_{\text{int}} \neq 0$	$w_{\text{int}} = 0$	$w_{\text{int}} \neq 0$
$R + R^2/(6M^2)$	+0.8	+0.3		+0.7
n = 2/3	+6.5	+3.5	-2.4	-2.3
n = 1	+6.2	+5.5	-2.1	-1.9
n = 4/3	+6.4	+5.5	-2.6	-2.4
n = 2	+8.6	+8.1	-4.7	-4.6
n = 3	+22.8	+21.7	-11.6	-11.4
n = 4	+43.3	+41.7	-23.3	-22.7
Natural	+7.2	+6.5	-2.4	-2.3
Hilltop(p = 2)	+4.4	+3.9	-2.6	-2.4
Hilltop(p = 4)	+3.7	+3.3	-2.8	-2.6
Double well	+5.5	+5.3	-3.1	-2.3
Brane inflation $(p = 2)$	+3.0	+2.3	-0.7	-0.9
Brane inflation $(p = 4)$	+2.8	+2.3	-0.4	-0.6
Exponential inflation	+0.8	+0.3	-0.7	-0.9
SB SUSY	+0.7	+0.4	-2.2	-1.7
Supersymmetric α -model	+0.7	+0.1	-1.8	-2.0
Superconformal $(m = 1)$	+0.9	+0.8	-2.3	-2.2
Superconformal $(m \neq 1)$	+0.7	+0.5	-2.4	-2.6

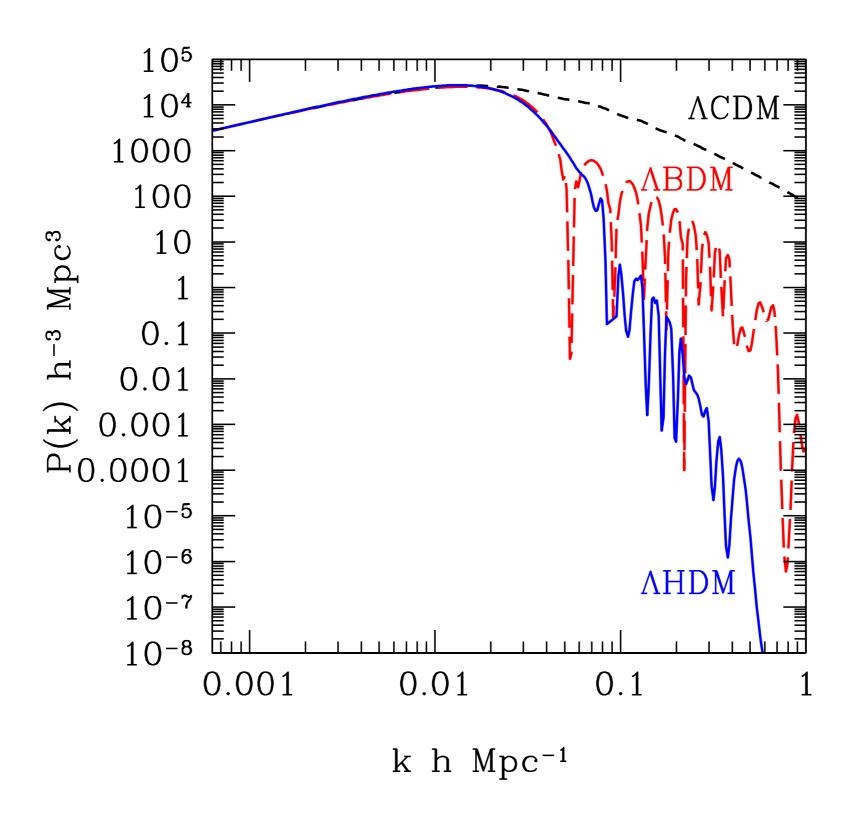
Planck 2015



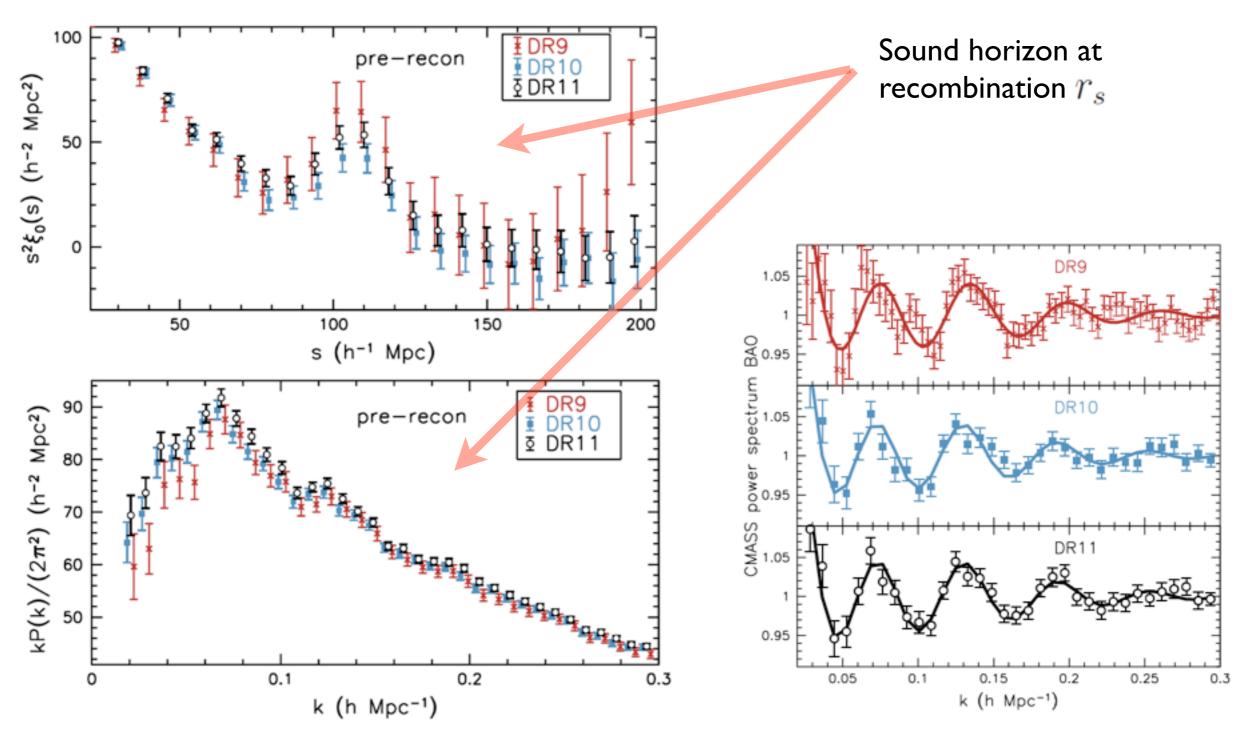
- Inflation fits the data.
- It is possible to look at higher order correlators- non-Gaussianity.
- There is an overabundance of possible models.
- There is a model for any possible value of the data.

Dark Energy

Dark Energy: BAO



Dark Energy: BAO



BOSS, Anderson et al 2013.

* Baryon Acoustic Oscillations

Background cosmology: parameters

Hubble parameter

$$H^{2}(a) \equiv \left(\frac{\dot{a}}{a}\right)^{2} = H_{0}^{2} \left[\frac{\Omega_{M}}{a^{3}} + \frac{\Omega_{R}}{a^{4}} + \frac{\Omega_{K}}{a^{2}} + \frac{\Omega_{DE}}{a^{3(1+w)}}\right]$$

Critical density $\rho_c = 1.9 \times 10^{-26} h^2 \text{kgm}^{-3}$ $P_{DE} = w \rho_{DE}$

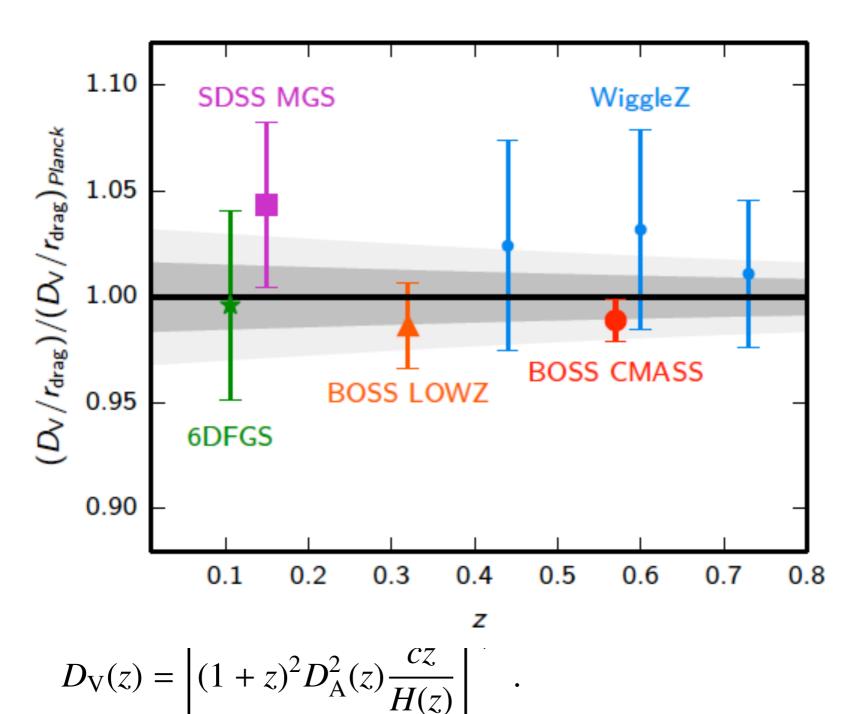
$$D_H = \frac{c}{H_0} = 3000 \ h^{-1} \text{ Mpc}$$
 $D_C = \int_t^{t_0} \frac{cdt'}{a(t')} = c \int_a^1 \frac{da}{a^2 H(a)}$

Luminosity distance: $D_L = (1+z) \left\{ egin{array}{ll} \frac{D_H}{\sqrt{\Omega_k}} \sinh[\sqrt{\Omega_k}D_C/D_H] & {\rm for} & \Omega_k > 0 \\ D_C & {\rm for} & \Omega_k = 0 \\ \frac{D_H}{\sqrt{|\Omega_k|}} \sin[\sqrt{|\Omega_k|}D_C/D_H] & {\rm for} & \Omega_k < 0 \end{array} \right.$

Angular diameter distance: $D_A = \frac{D_L}{(1+z)^2}$

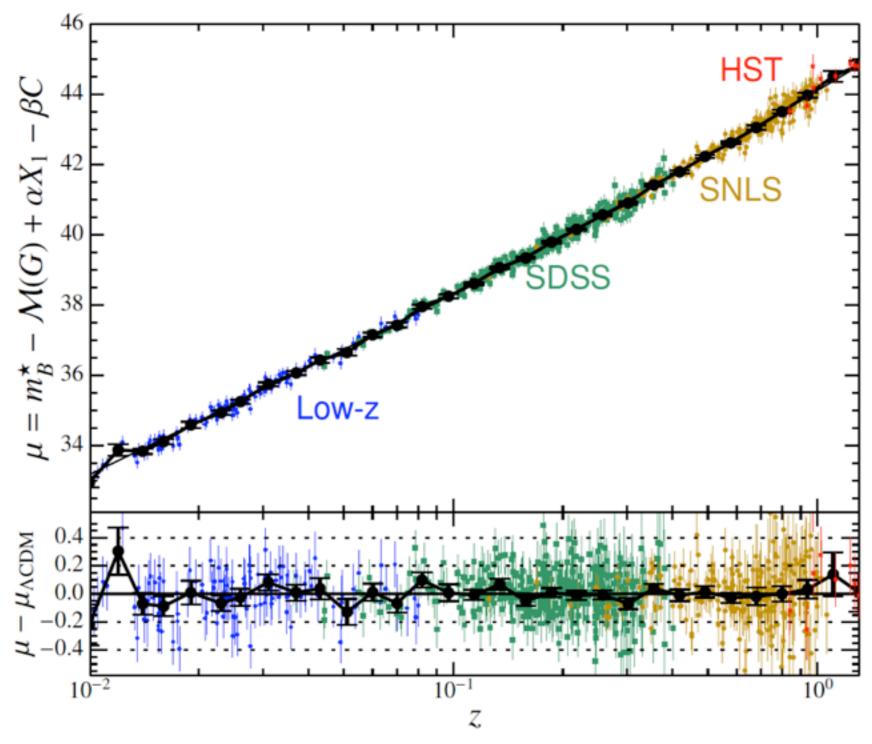
(x^{2}) 0.95 (x^{2}) 0.9

Dark Energy: BAO



Planck 2015

Dark Energy: Supernovae la



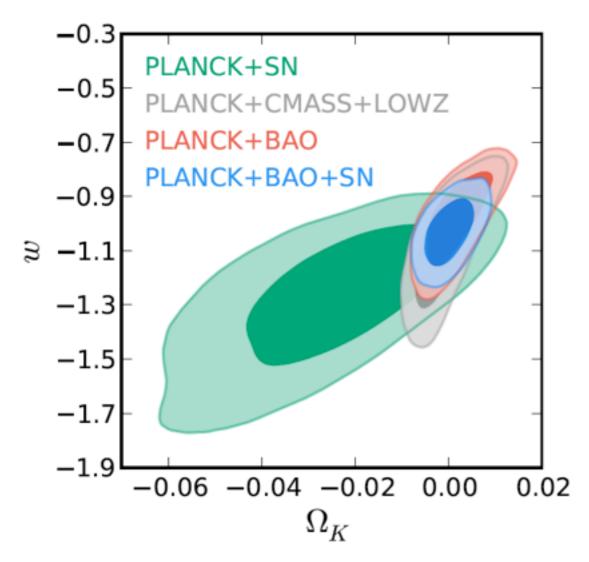
Betoule et al (2014)

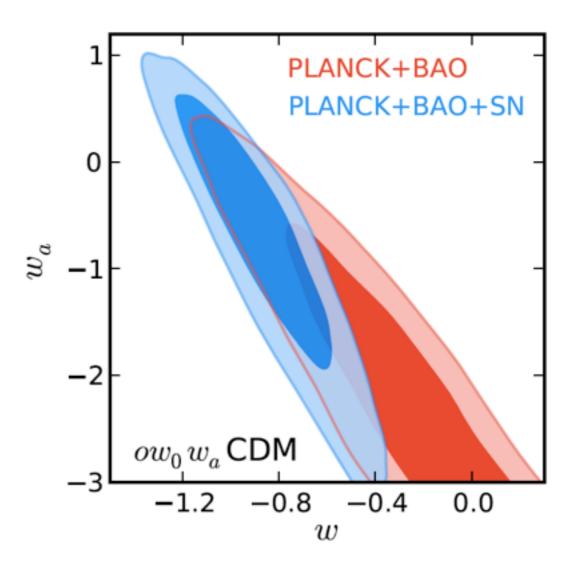
Dark Energy: CMB+SN+BAO

$$w = w_0 + w_a(1 - a)$$

test of curvature

time evolution of equation of state

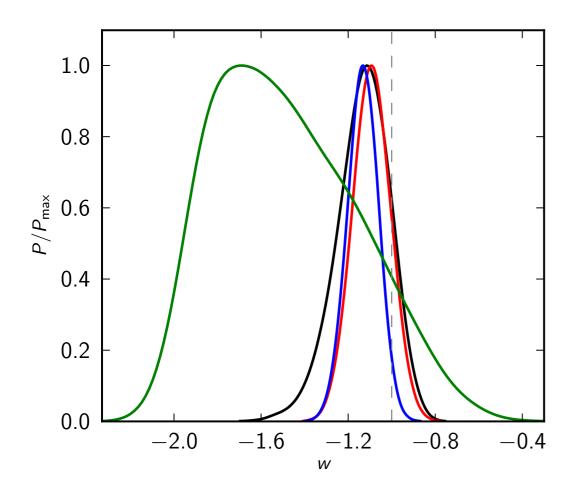




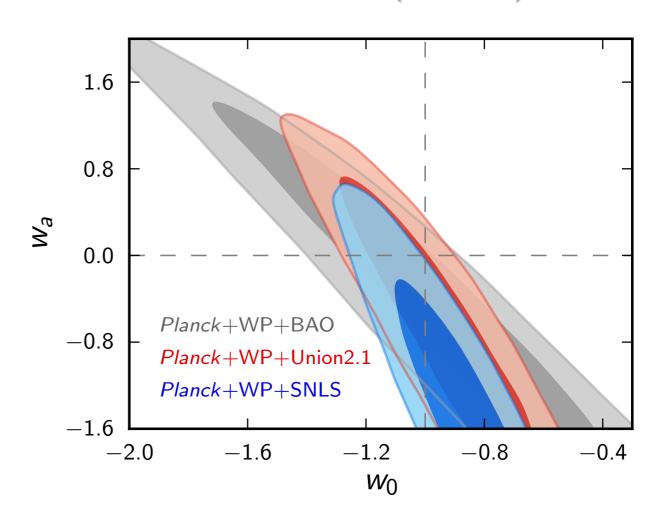
Anderson et al 2013

Dark Energy: CMB+SN+BAO

$$w = constant$$

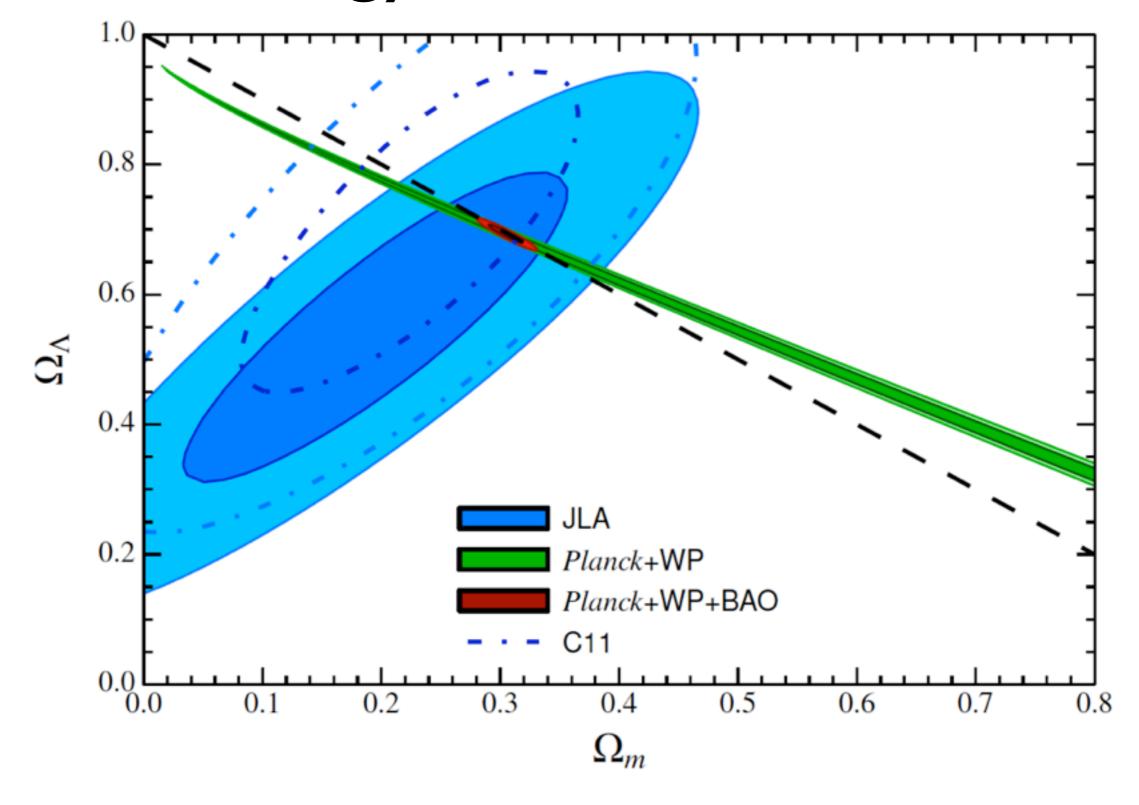


$$w = w_0 + w_a(1-a)$$



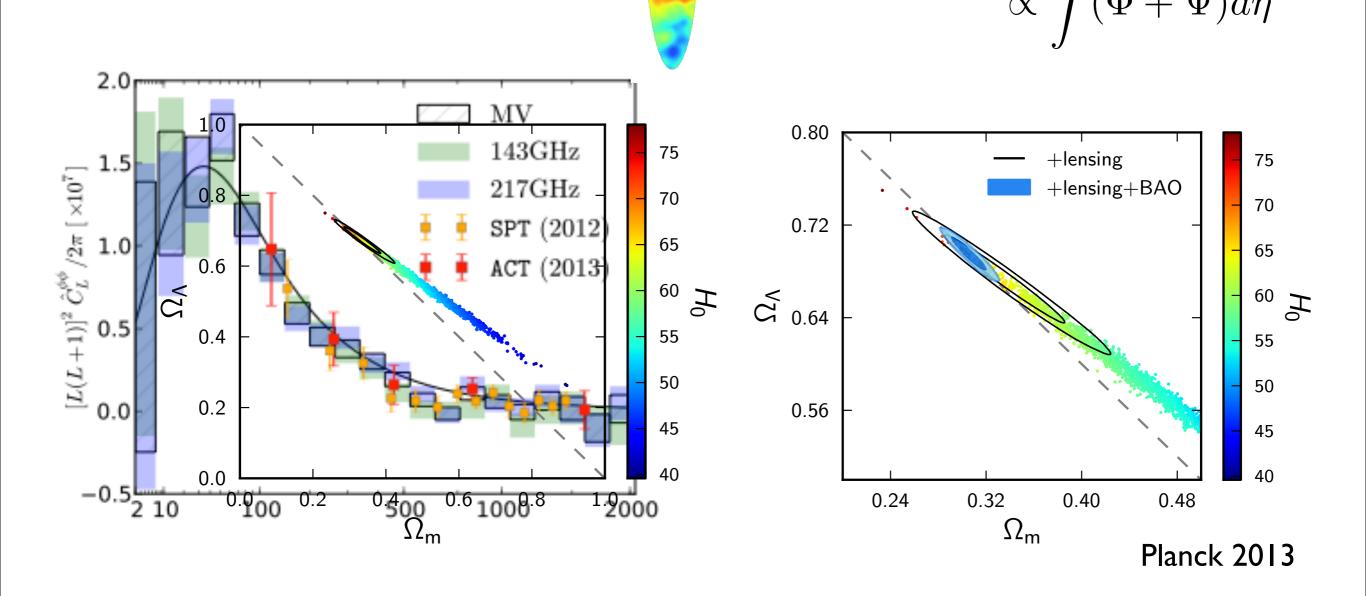
$$w = -1.13 \pm 0.12 \quad (68\% \text{ Planck} + \text{WMAP} + \text{BAO})$$

Dark Energy: CMB+SN+BAO

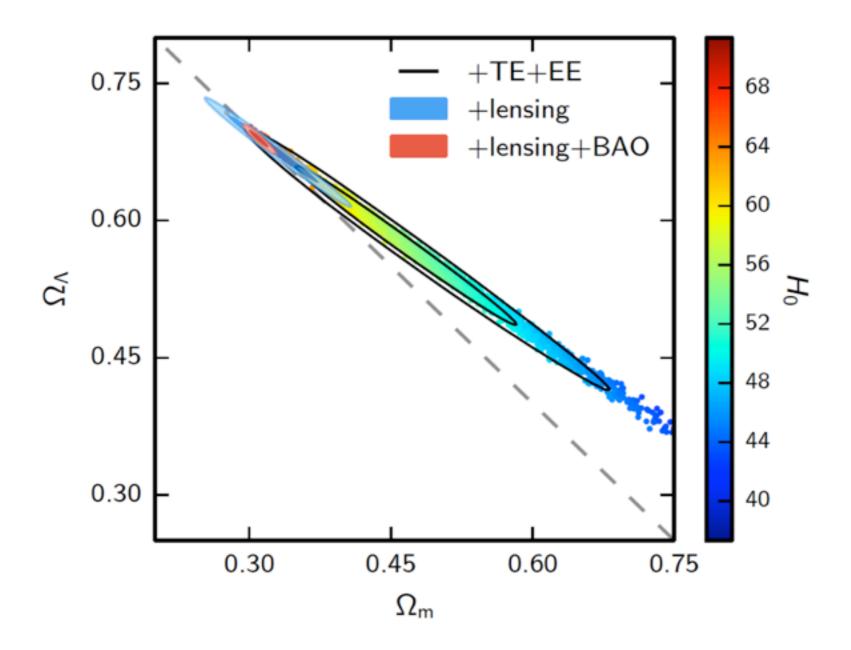


Dark Energy: CMB Weak Lensing

Measure curvature and Λ from CMB alone!

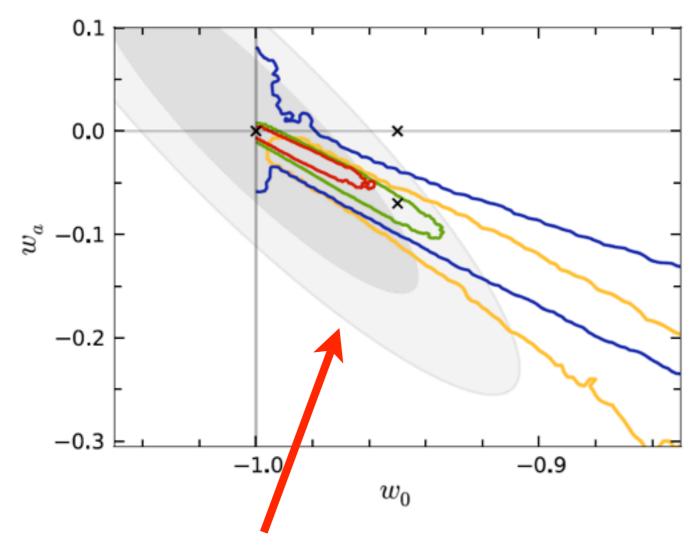


Dark Energy: CMB Weak Lensing



$$\Omega_k = -0.005^{+0.016}_{-0.017}$$

Dark Energy: model discrimination



Forecast precision of Stage IV survey

$$\begin{split} V(\phi) &= A M_P^2 M_H^2 \mathcal{P}(\phi) \\ \mathcal{P}(\phi) &= c_\Lambda \xi_\Lambda + f(\phi) + \sum_{n_{\min}}^{n_{\max}} c_n \xi_n b_n(\phi) \end{split}$$

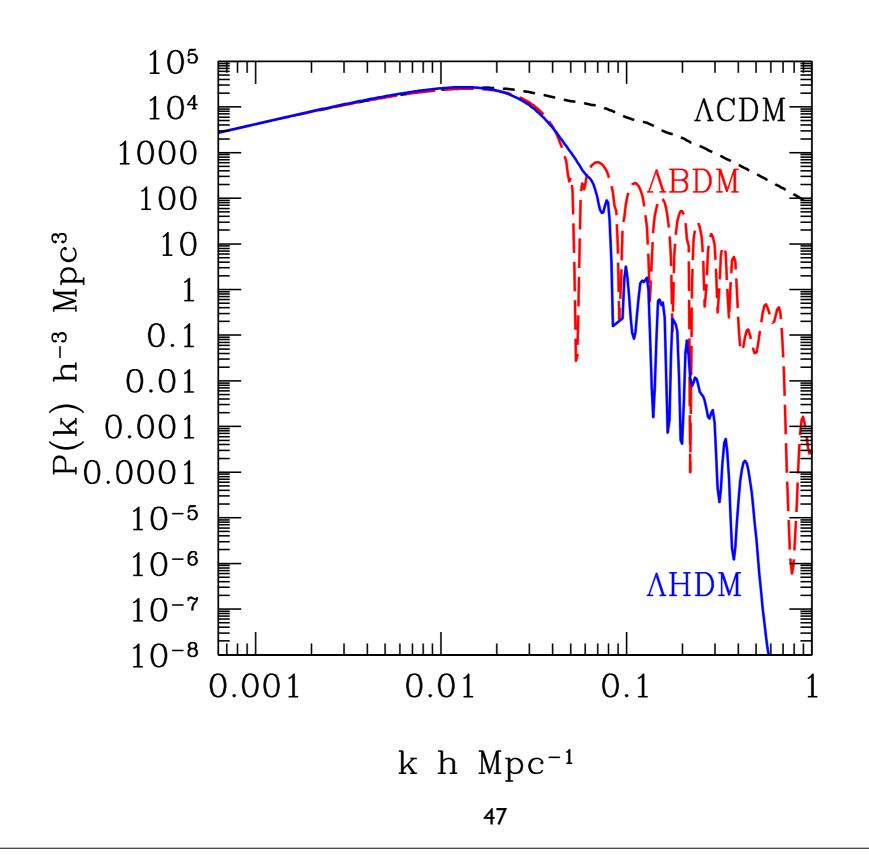
Model	$b_n(\phi)$	c_n	n_{\min}	$f(\phi)$	ϕ_i
Kac	ϕ^n	1	1	0	[-1, 1]
Weyl	ϕ^n	$1/\sqrt{n!}$	1	0	[-1, 1]
Monomial	0			ϕ^N	[0,4]
EFT	ϕ^n	$(\epsilon_{\mathrm{F}})^n$	p_E	$\xi_2\epsilon_{ m F}^2\phi^2+\ \xi_4\epsilon_{ m F}^4\phi^4$	$[-\epsilon_{\mathrm{F}}^{-1},\epsilon_{\mathrm{F}}^{-1}]$
Axion	$\cos(n\epsilon_{\rm F}\phi)$	$(\epsilon_{\rm NP})^{n-1}$	2	$1 + \cos \epsilon_{\rm F} \phi$	$\left[-\frac{\pi}{\epsilon_{\mathrm{F}}}, \frac{\pi}{\epsilon_{\mathrm{F}}}\right]$
Modulus	$e^{\alpha(p_D-n)\phi}$	$(\epsilon_{\mathrm{D}})^n$	0	0	[-1, 1]

Marsh et al (2014)

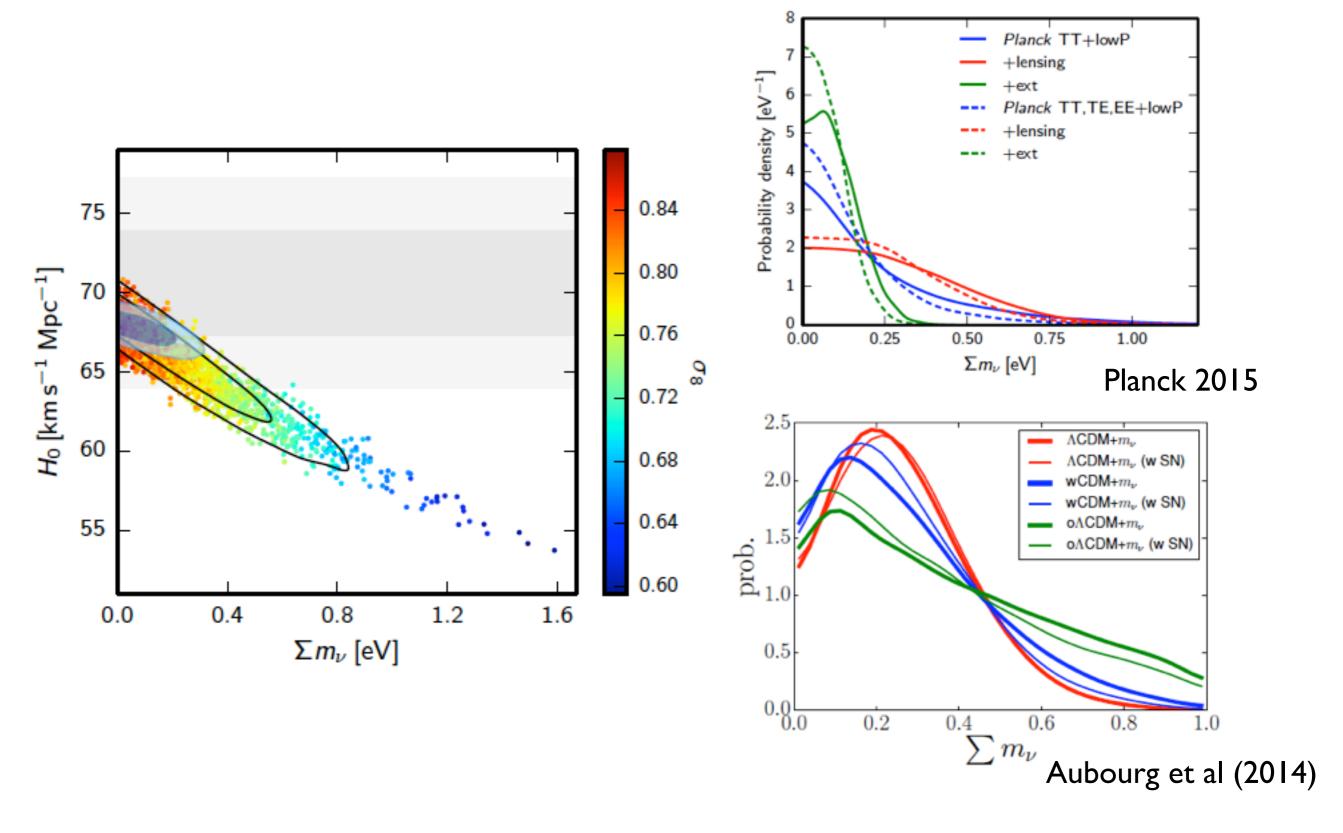
Dark Energy: model discrimination

- Overwhelming evidence for dark energy.
- Different probes are orthogonal.
- Modest constraints on the equation of state.
- Will it be possible to discriminate between models?

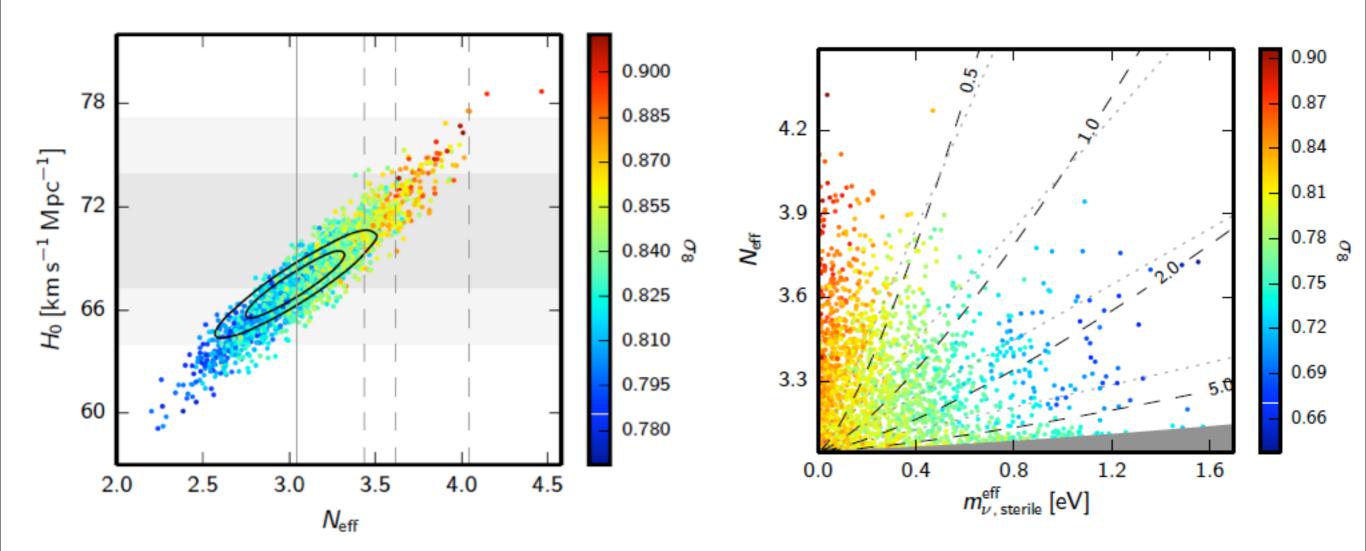
Ultra light fields: Neutrinos



Ultra light fields: Neutrinos (mass)



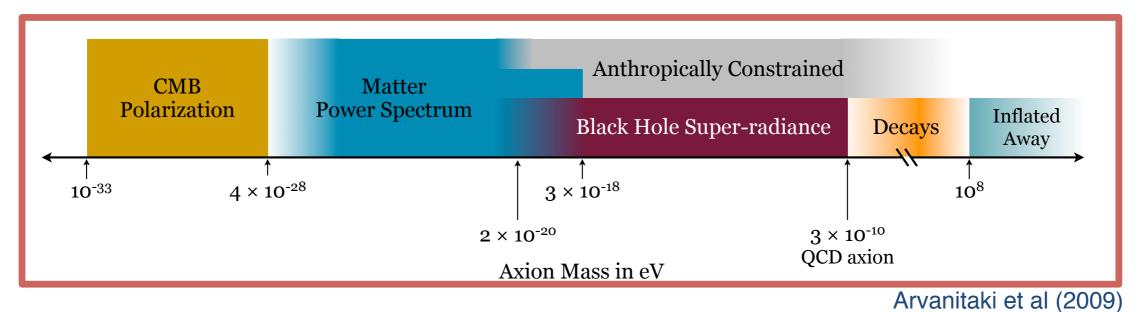
Ultra light fields: Neutrinos (number)

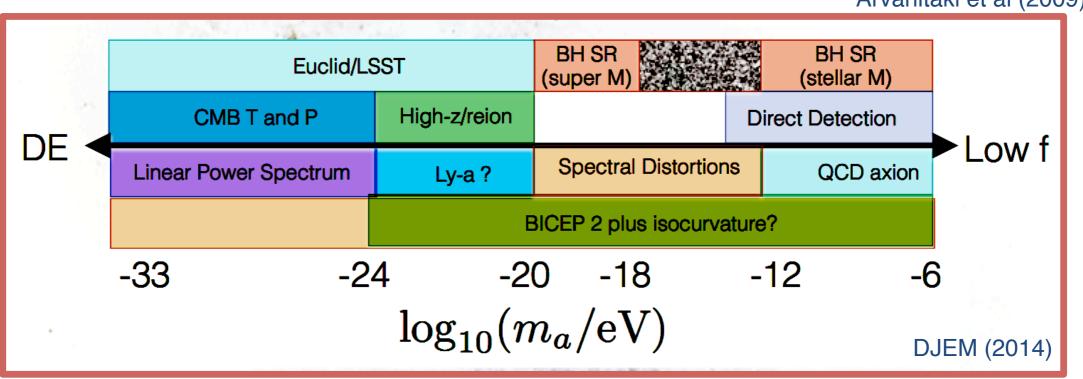


$$\rho = N_{\text{eff}} \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \rho_{\gamma}$$

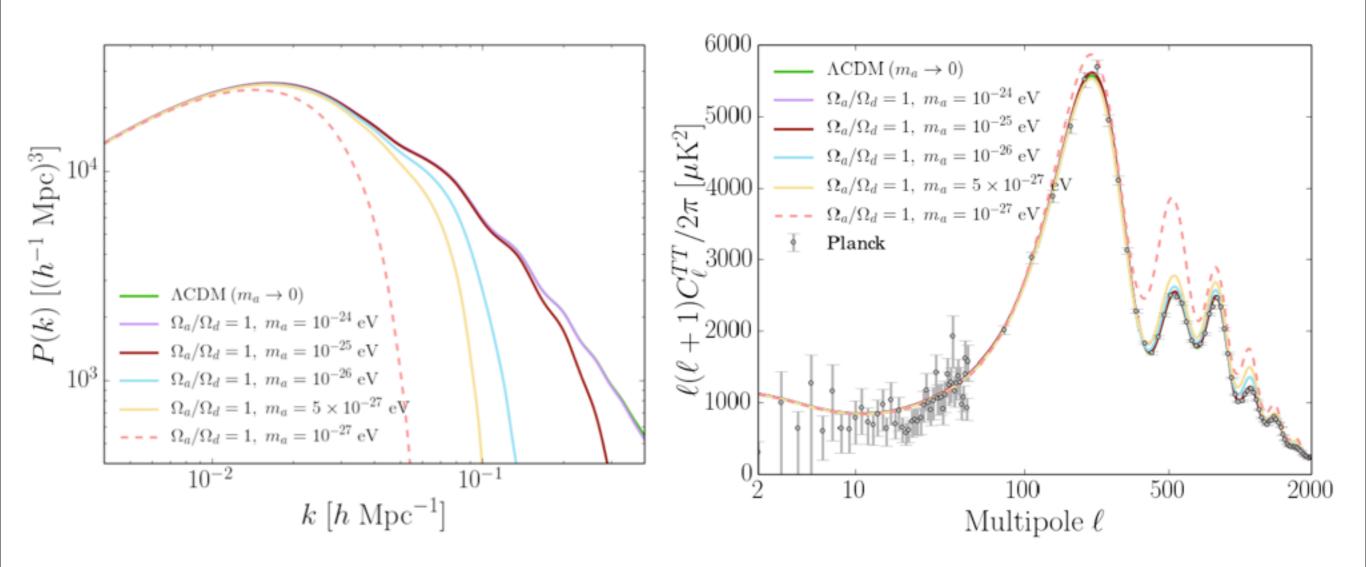
Planck 2015

Ultra light fields: ultra-light axions



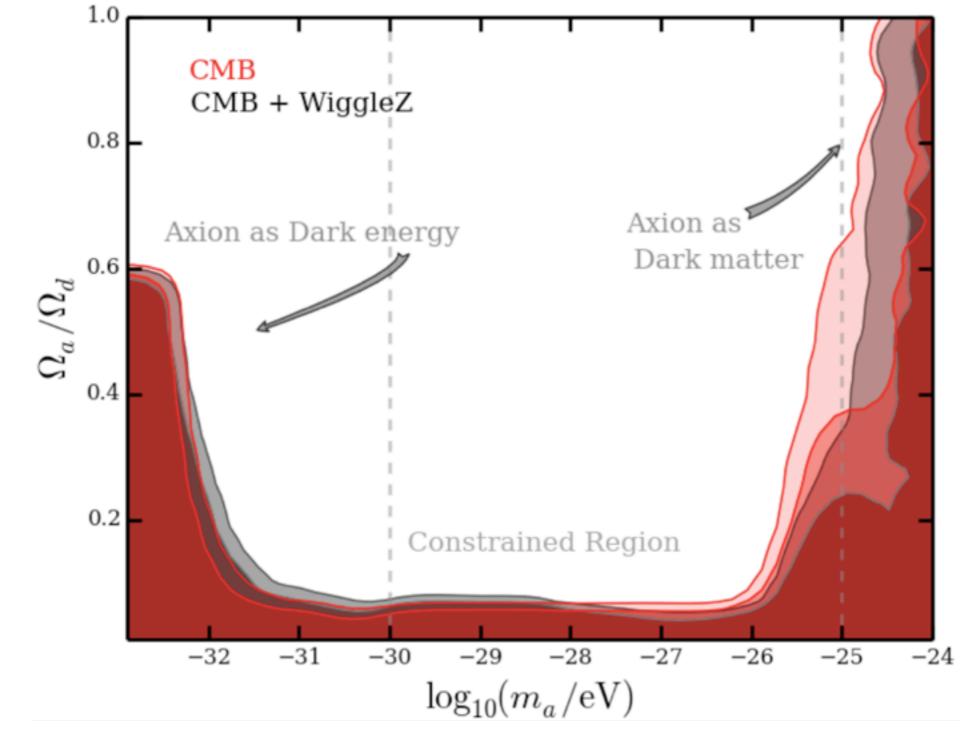


Ultra light fields: ultra-light axions



Marsh et al (2014)

Ultra light fields: ultra-light axions

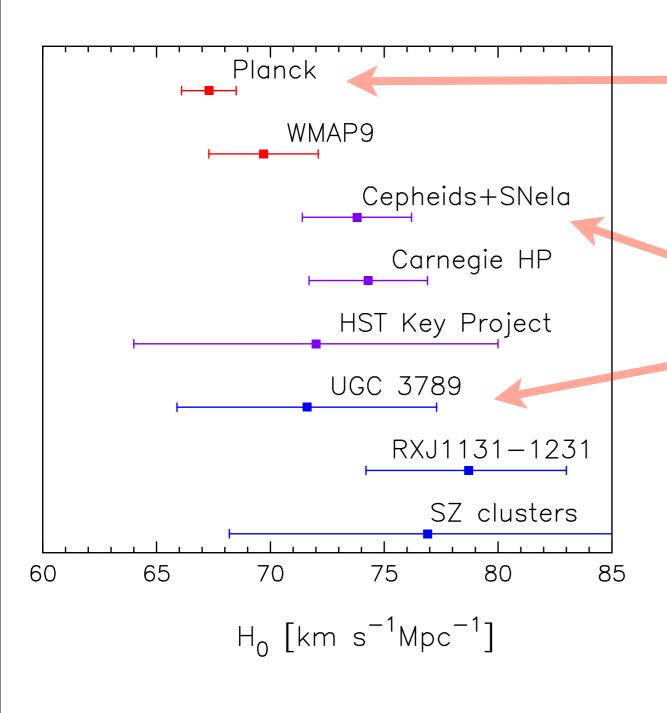


Marsh et al (2014)

Ultra light fields

- Strong effects from ultra-relativistic fields.
- Tight constraints on fundamental parameters.
- Most promising route in the near future.

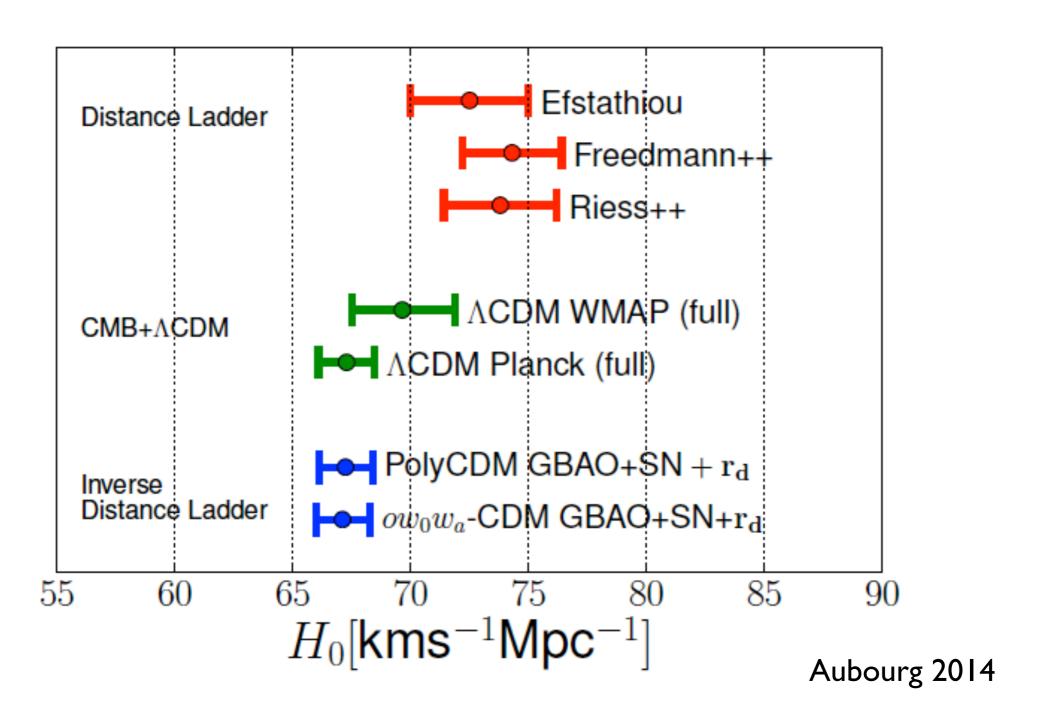
Inconsistencies: Hubble Constant



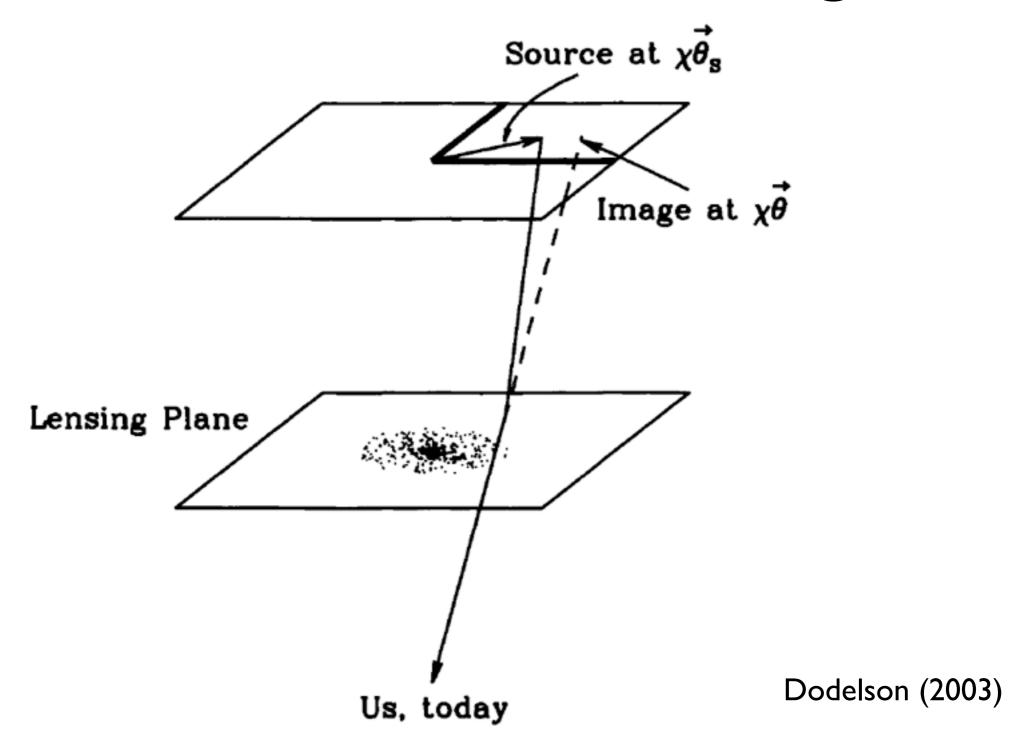
Mild tension with the CMB

NGC4258 and UGC at 50 Mpc have been revised down

Inconsistencies: Hubble Constant

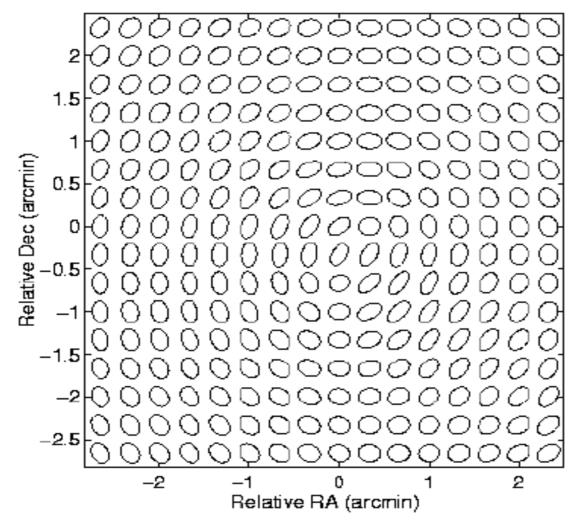


Inconsistencies: Weak Lensing



Inconsistencies: Weak Lensing

Shear Alone



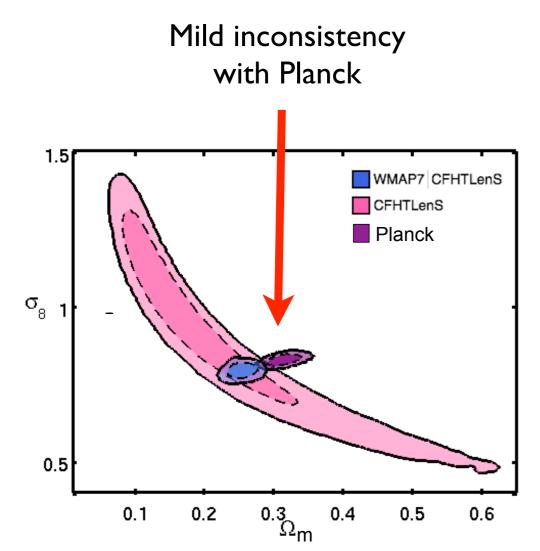
distortion tensor

$$\psi_{ij}(\vec{\theta}) = \frac{1}{2} \int_0^{\chi_{\infty}} d\chi \partial_i \partial_j [\Psi + \Psi](\vec{x}(\chi)) g(\chi)$$

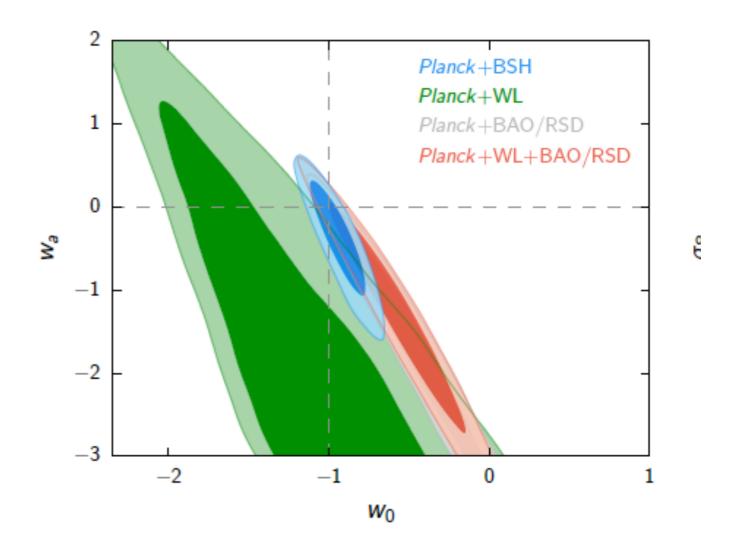
$$g(\chi) = 2\chi \int_{\chi}^{\chi_{\infty}} d\chi' \left(1 - \frac{\chi}{\chi'}\right) W(\chi')$$

source distribution

Inconsistencies: Weak Lensing

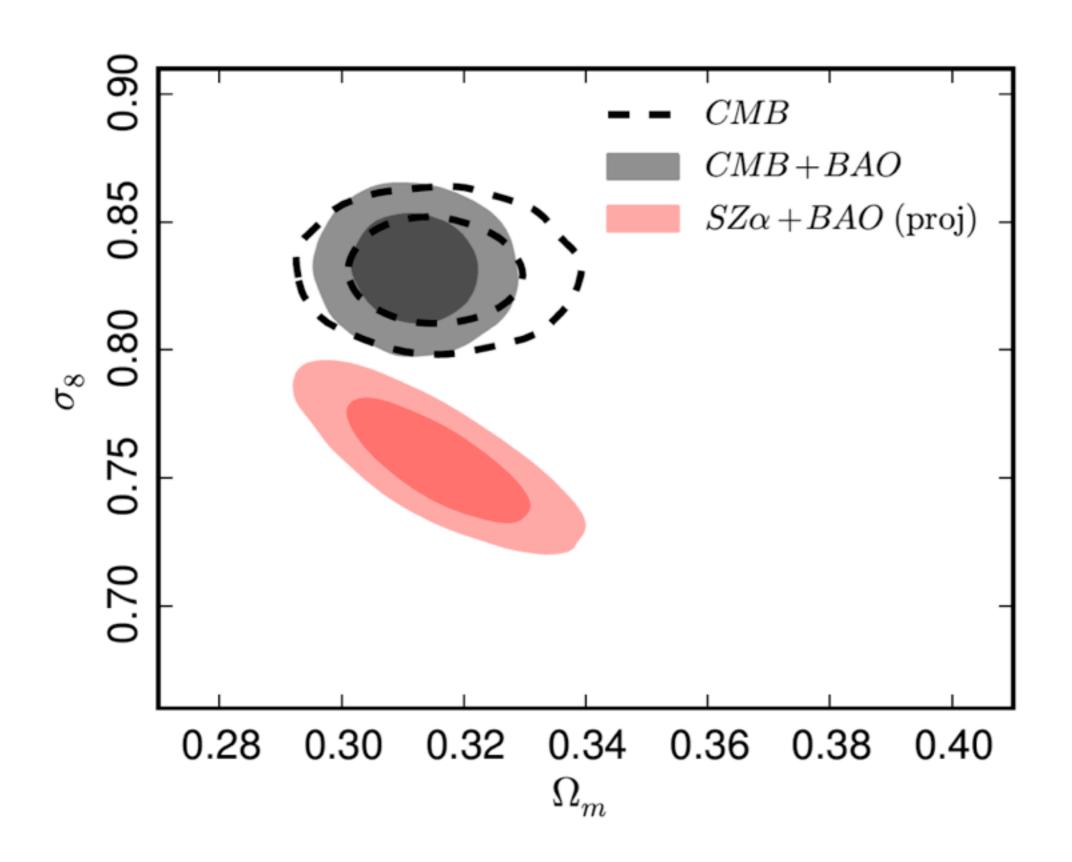


CFHTLens Heymans et al 2013



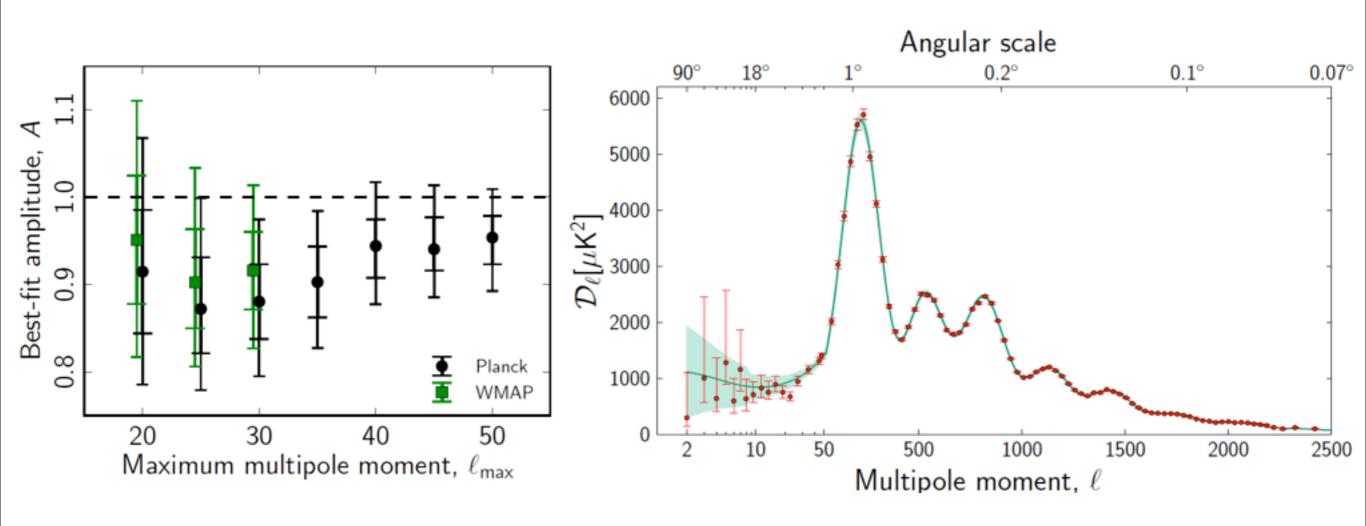
Planck 2015

Inconsistencies: Cluster counts



Planck 2015

Inconsistencies: large angles CMB



Particle Physics from Cosmology

- Simple flat ΛCDM model still fits (most) data.
- Strong constraints on ultralight fields.
- Some constraints of inflation- are they fundamental?
- Some constraints DE behaviour are they fundamental?
- Some inconsistencies- do we need better data?