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Precision cosmology then ...

Hubble 1929
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Precision cosmology now ...

Planck 2015

Tuesday, 30 June 15



The Universe as a particle accelerator
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Desiderata for a particle physicist

• The inflationary era (what kind of fields, 
potentials, energy scales)

• Dark energy (what is it, what energy scales)

• Ultra-light fields (neutrinos, ultralight axions)

• The dark matter (what kind of dark matter 
particle, cross section)

• Gravity (what is it, precision tests)- next lecture
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Outline

• The background

• Linear theory 

• Inflation

• Dark energy

• Relativistic particles

• Inconsistencies
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G↵� = 8⇡GT↵�

curvature of 3-space

Conservation of energy-momentum

physical time

Background cosmology: FRW equations

metric of 3-space

density
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Background cosmology: parameters
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Critical density

Hubble parameter

Luminosity distance:

Angular diameter distance:
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Background cosmology: measure distances

Betoule et al (2014)

Measure 

or
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Tight coupling:

Collisional damping
(Silk damping)

Free streaming:

Background cosmology: CMB
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Large scale structure: cosmic web

SDSS
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Linear Perturbation Theory

Perturbed
Einstein field 
equations

Perturbed metric (in conformal time now)
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Linear Perturbation Theory

Perturbed
Einstein field 
equations

Perturbed metric (in conformal time now)
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Energy-momentum conservation (no shear):

radiation:dust:

Examples:

density  contrast

velocity divergence

Linear Perturbation Theory
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Aside:  Newtonian theory

Jeans length:

sound speed

expansion/dilution pressure/reaction gravity/collapse

Linear Perturbation Theory
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Linear Perturbations: evolution

dust:

baryons:

Scale factor:

radiation era matter era  era
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Linear Perturbations: initial conditions

primordial black holesCMB quadropole

Peebles-Harrison-Zel’dovich spectrum (1970)
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Large scale structure: cosmic web

SDSS
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Large scale structure: cosmic web

density contrast

power spectrum

mass variance
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Large scale structure: cosmic web
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Intrinisic

Doppler

Sachs-Wolfe

Integrated Sachs-Wolfe

gravitational redshift

Large scale structure: CMB
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Large scale structure: CMB

Planck
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Planck 
2013

Angular power spectrum 
of the CMB 

Large scale structure: CMB

CMB anisotropies

angular power spectrum

spherical harmonic transform
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From linear to non-linear physics.
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Inflation
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Inflation (1980)

http://www.astro.umass.edu/~myun

Initial Conditions: Inflation
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Energy scale of inflation

Initial Conditions: Inflation

Cosmological scalar fields:

• Only 3 observables
•  Constrain a very small piece 
of the potential

•  Huge degeneracy between 
models
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E and B modes of polarization

Sourced by tensorsSourced by scalars

Initial Conditions: Inflation
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E-modes

B-modes

Initial Conditions: Inflation
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Primordial Tilt

Initial Conditions: Inflation

5-sigma away from scale invariance 

No running of spectral tilt Upper bound on tensor modes

Planck 2013
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Initial Conditions: Inflation

Planck 2015

Primordial Gravitational 
Waves
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Courtesy of
I. Wehus
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• Inflation fits the data.

• It is possible to look at higher order 
correlators- non-Gaussianity.

• There is an overabundance of possible 
models.

• There is a model for any possible value of 
the data.

Initial Conditions: Inflation
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Dark Energy: BAO
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Dark Energy: BAO

BOSS, Anderson et al 2013.  

Sound horizon at
recombination

* Baryon Acoustic Oscillations
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Background cosmology: parameters
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Critical density

Hubble parameter

Luminosity distance:

Angular diameter distance:
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Planck Collaboration: Cosmological parameters

from excess residuals at the µK2 level in the high-` spectra rela-
tive to the best-fit AL = 1 ⇤CDM+foregrounds model on scales
where extragalactic foreground modelling is critical.

5.2. Baryon acoustic oscillations

Baryon acoustic oscillations (BAO) in the matter power spec-
trum were first detected in analyses of the 2dF Galaxy
Redshift Survey (Cole et al. 2005) and the SDSS redshift sur-
vey (Eisenstein et al. 2005). Since then, accurate BAO measure-
ments have been made using a number of di↵erent galaxy red-
shift surveys, providing constraints on the distance luminosity
relation spanning the redshift range 0.1 <⇠ z <⇠ 0.718. Here we use
the results from four redshift surveys: the SDSS DR7 BAO mea-
surements at e↵ective redshifts ze↵ = 0.2 and ze↵ = 0.35, anal-
ysed by Percival et al. (2010); the z = 0.35 SDSS DR7 measure-
ment at ze↵ = 0.35 reanalyzed by Padmanabhan et al. (2012); the
WiggleZ measurements at ze↵ = 0.44, 0.60 and 0.73 analysed by
Blake et al. (2011); the BOSS DR9 measurement at ze↵ = 0.57
analyzed by Anderson et al. (2013); and the 6dF Galaxy Survey
measurement at z = 0.1 discussed by Beutler et al. (2011).

BAO surveys measure the distance ratio

dz =
rs(zdrag)
DV(z)

, (45)

where rs(zdrag) is the comoving sound horizon at the baryon drag
epoch (when baryons became dynamically decoupled from the
photons) and DV(z) is a combination of the angular-diameter dis-
tance, DA(z), and the Hubble parameter, H(z), appropriate for the
analysis of spherically-averaged two-point statistics:

DV(z) =
"
(1 + z)2D2

A(z)
cz

H(z)

#1/3
. (46)

In the ⇤CDM cosmology, the angular diameter distance to red-
shift z is

DA(z) =
c

H0
D̂A.

=
c

H0

1
|⌦K |1/2(1 + z)

sinK
h
|⌦K |1/2x(z,⌦m,⌦⇤)

i
, (47)

where

x(z,⌦m,⌦⇤) =
Z z

0

dz0

[⌦m(1 + z0)3 +⌦K(1 + z0)2 +⌦⇤]1/2 , (48)

and sinK = sinh for ⌦K > 0 and sinK = sin for ⌦K < 0. Note
that the luminosity distance, DL, relevant for the analysis of Type
Ia supernovae (see Sect. 5.4) is related to the angular diameter
distance via DL = (c/H0)D̂L = DA(1 + z)2.

Di↵erent groups fit and characterize BAO features in di↵er-
ent ways. For example, the WiggleZ team encode some shape
information on the power spectrum to measure the acoustic pa-
rameter A(z), introduced by Eisenstein et al. (2005),

A(z) =
DV(z)

q
⌦mH2

0

cz
, (49)

18Detections of a BAO feature have recently been reported in the
three-dimensional correlation function of the Ly↵ forest in large sam-
ples of quasars at a mean redshift of z ⇡ 2.3 (Busca et al. 2012;
Slosar et al. 2013). These remarkable results, probing cosmology well
into the matter-dominated regime, are based on new techniques that are
less mature than galaxy BAO measurements. For this reason, we do not
include Ly↵ BAO measurements as supplementary data to Planck. For
the models considered here and in Sect. 6, the galaxy BAO results give
significantly tighter constraints than the Ly↵ results.

Fig. 15. Acoustic-scale distance ratio rs/DV(z) divided by the
distance ratio of the Planck base ⇤CDM model. The points are
colour-coded as follows: green star (6dF); purple squares (SDSS
DR7 as analyzed by Percival et al. 2010); black star (SDSS DR7
as analyzed by Padmanabhan et al. 2012); blue cross (BOSS
DR9); and blue circles (WiggleZ). The grey band shows the ap-
proximate ±1� range allowed by Planck (computed from the
CosmoMC chains).

which is almost independent of !m. To simplify the presenta-
tion, Fig. 15 shows estimates of rs/DV(z) and 1� errors, as
quoted by each of the experimental groups, divided by the ex-
pected relation for the Planck base ⇤CDM parameters. Note
that the experimental groups use the approximate formulae of
Eisenstein & Hu (1998) to compute zdrag and rs(zdrag), though
they fit power spectra computed with Boltzmann codes, such
as camb, generated for a set of fiducial-model parameters. The
measurements have now become so precise that the small di↵er-
ence between the Eisenstein & Hu (1998) approximations and
the accurate values of zdrag and rdrag = rs(zdrag) returned by camb
need to be taken into account. In CosmoMC we multiply the ac-
curate numerical value of rs(zdrag) by a constant factor of 1.0275
to match the Eisenstein-Hu approximation in the fiducial model.
This correction is su�ciently accurate over the range of !m and
!b allowed by the CMB in the base ⇤CDM cosmology (see e.g.
Mehta et al. 2012) and also for the extended ⇤CDM models dis-
cussed in Sect. 6.

The Padmanabhan et al. (2012) result plotted in Fig. 15 is
a reanalysis of the ze↵ = 0.35 SDSS DR7 sample discussed
by Percival et al. (2010). Padmanabhan et al. (2012) achieve a
higher precision than Percival et al. (2010) by employing a re-
construction technique (Eisenstein et al. 2007) to correct (par-
tially) the baryon oscillations for the smearing caused by galaxy
peculiar velocities. The Padmanabhan et al. (2012) results are
therefore strongly correlated with those of Percival et al. (2010).
We refer to the Padmanabhan et al. (2012) “reconstruction-
corrected” results as SDSS(R). A similar reconstruction tech-
nique was applied to the BOSS survey by Anderson et al. (2013)
to achieve 1.6% precision in DV(z = 0.57)/rs, the most precise
determination of the acoustic oscillation scale to date.

All of the BAO measurements are compatible with the base
⇤CDM parameters from Planck. The grey band in Fig. 15
shows the ±1� range in the acoustic-scale distance ratio com-
puted from the Planck+WP+highL CosmoMC chains for the base
⇤CDM model. To get a qualitative feel for how the BAO mea-
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Planck 2015

Dark Energy: BAO

Tuesday, 30 June 15



Betoule et al (2014)

Dark Energy: Supernovae Ia
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Anderson et al 2013

test of curvature time evolution of equation of state

Dark Energy: CMB+SN+BAO
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Planck Collaboration: Cosmological parameters

�2.0 �1.6 �1.2 �0.8 �0.4
w

0.0

0.2

0.4

0.6

0.8

1.0

P
/P

m
ax

Planck+WP+BAO

Planck+WP+Union2.1

Planck+WP+SNLS

Planck+WP

Fig. 34. Marginalized posterior distributions for the dark en-
ergy equation of state parameter w (assumed constant), for
Planck+WP alone (green) and in combination with SNe data
(SNSL in blue and the Union2.1 compilation in red) or BAO
data (black). A flat prior on w from �3 to �0.3 was as-
sumed and, importantly for the CMB-only constraints, the prior
[20, 100] km s�1 Mpc�1 on H0. The dashed grey line indicates
the cosmological constant solution, w = �1.

which is in tension with w = �1 at more than the 2� level.
The results in Eqs. (91–93) reflect the tensions between the

supplementary data sets and the Planck base ⇤CDM cosmology
discussed in Sect. 5. The BAO data are in excellent agreement
with the Planck base ⇤CDM model, so there is no significant
preference for w , �1 when combining BAO with Planck. In
contrast, the addition of the H0 measurement, or SNLS SNe data,
to the CMB data favours models with exotic physics in the dark
energy sector. These trends form a consistent theme throughout
this section. The SNLS data favours a lower ⌦ in the ⇤CDM
model than Planck, and hence larger dark energy density today.
The tension can be relieved by making the dark energy fall away
faster in the past than for a cosmological constant, i.e., w < �1.

The constant w models are of limited physical interest. If
w , �1 then it is likely to change with time. To investigate
this we consider the simple linear relation in Eq. (4), w(a) =
w0 + wa(1 � a), which has often been used in the literature
(Chevallier & Polarski 2001; Linder 2003). This parameteriza-
tion approximately captures the low-redshift behaviour of light,
slowly-rolling minimally-coupled scalar fields (as long as they
do not contribute significantly to the total energy density at early
times) and avoids the complexity of scanning a large number of
possible potential shapes and initial conditions. The dynamical
evolution of w(a) can lead to distinctive imprints in the CMB
(Caldwell et al. 1998) which would show up in the Planck data.

Figure 35 shows contours of the joint posterior distribution in
the w0–wa plane using Planck+WP+BAO data (colour-coded ac-
cording to the value of H0). The points are coloured by the value
of H0, which shows a clear variation with w0 and wa reveal-
ing the three-dimensional nature of the geometric degeneracy in
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Fig. 35. 2D marginalized posterior distribution for w0 and wa
for Planck+WP+BAO data. The contours are 68% and 95%,
and the samples are colour-coded according to the value of H0.
Independent flat priors of �3 < w0 < �0.3 and �2 < wa < 2
are assumed. Dashed grey lines show the cosmological constant
solution w0 = �1 and wa = 0.

such models. The cosmological constant point (w0,wa) = (�1, 0)
lies within the 68% contour and the marginalized posteriors for
w0 and wa are

w0 = �1.04+0.72
�0.69 (95%; Planck+WP+BAO), (94a)

wa < 1.32 (95%; Planck+WP+BAO). (94b)

Including the H0 measurement in place of the BAO data moves
(w0,wa) away from the cosmological constant solution towards
negative wa at just under the 2� level.

Figure 36 shows likelihood contours for (w0,wa), now
adding SNe data to Planck. As discussed in detail in Sect. 5,
there is a dependence of the base ⇤CDM parameters on the
choice of SNe data set, and this is reflected in Fig. 36. The re-
sults from the Planck+WP+Union2.1 data combination are in
better agreement with a cosmological constant than those from
the Planck+WP+SNLS combination. For the latter data combi-
nation, the cosmological constant solution lies on the 2� bound-
ary of the (w0,wa) distribution.

Dynamical dark energy models might also give a non-
negligible contribution to the energy density of the Universe
at early times. Such early dark energy (EDE; Wetterich 2004)
models may be very close to ⇤CDM recently, but have a non-
zero dark energy density fraction, ⌦e, at early times. Such mod-
els complement the (w0,wa) analysis by investigating how much
dark energy can be present at high redshifts. EDE has two main
e↵ects: it reduces structure growth in the period after last scat-
tering; and it changes the position and height of the peaks in the
CMB spectrum.

The model we adopt here is that of Doran & Robbers (2006):

⌦de(a) =
⌦0

de �⌦e(1 � a�3w0 )
⌦0

de +⌦
0
ma3w0

+⌦e(1 � a�3w0 ) . (95)

It requires two additional parameters to those of the base⇤CDM
model: ⌦e, the dark energy density relative to the critical den-
sity at early times (assumed constant in this treatment); and the
present-day dark energy equation of state parameter w0. Here⌦0

m
is the present matter density and⌦0

de = 1�⌦0
m is the present dark
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Fig. 36. 2D marginalized posterior distributions for w0 and
wa, for the data combinations Planck+WP+BAO (grey),
Planck+WP+Union2.1 (red) and Planck+WP+SNLS (blue).
The contours are 68% and 95%, and dashed grey lines show the
cosmological constant solution.

energy abundance (for a flat Universe). Note that the model of
Eq. (95) has dark energy present over a large range of redshifts;
the bounds on ⌦e can be substantially weaker if dark energy is
only present over a limited range of redshifts (Pettorino et al.
2013). The presence or absence of dark energy at the epoch of
last scattering is the dominant e↵ect on the CMB anisotropies
and hence the constraints are insensitive to the addition of low
redshift supplementary data such as BAO.

The most precise bounds on EDE arise from the analysis
of CMB anisotropies (Doran et al. 2001; Caldwell et al. 2003;
Calabrese et al. 2011; Reichardt et al. 2012; Sievers et al.
2013; Hou et al. 2012; Pettorino et al. 2013). Using
Planck+WP+highL, we find

⌦e < 0.009 (95%; Planck+WP+highL). (96)

(The limit for Planck+WP is very similar: ⌦e < 0.010.) These
bounds are consistent with and improve the recent ones of
Hou et al. (2012), who give ⌦e < 0.013 at 95% CL, and
Sievers et al. (2013), who find ⌦e < 0.025 at 95% CL.

In summary, the results on dynamical dark energy (except for
those on early dark energy discussed above) are dependent on
exactly what supplementary data are used in conjunction with
the CMB data. (Planck lensing does not significantly improve
the constraints on the models discussed here.) Using the direct
measurement of H0, or the SNLS SNe sample, together with
Planck we see preferences for dynamical dark energy at about
the 2� level reflecting the tensions between these data sets and
Planck in the⇤CDM model. In contrast, the BAO measurements
together with Planck give tight constraints which are consistent
with a cosmological constant. Our inclination is to give greater
weight to the BAO measurements and to conclude that there is
no strong evidence that the dark energy is anything other than a
cosmological constant.

6.6. Dark matter annihilation

Energy injection from dark matter (DM) annihilation can
change the recombination history and a↵ect the shape of
the angular CMB spectra (Chen & Kamionkowski 2004;

Padmanabhan & Finkbeiner 2005; Zhang et al. 2006;
Mapelli et al. 2006). As recently shown in several papers
(see e.g., Galli et al. 2009, 2011; Giesen et al. 2012; Hutsi et al.
2011; Natarajan 2012) CMB anisotropies o↵er an opportunity
to constrain DM annihilation models.

High-energy particles injected in the high-redshift thermal
gas by DM annihilation are typically cooled down to the keV
scale by high energy processes; once the shower has reached
this energy scale, the secondary particles produced can ion-
ize, excite or heat the thermal gas (Shull & van Steenberg 1985;
Valdes et al. 2010); the first two processes modify the evolution
of the free electron fraction xe, while the third a↵ects the tem-
perature of the baryons.

The rate of energy release, dE/dt, per unit volume by a relic
annihilating DM particle is given by

dE
dt

(z) = 2 g ⇢2
cc2⌦2

c(1 + z)6 pann(z), (97)

where pann is, in principle, a function of redshift z, defined as

pann(z) ⌘ f (z)
h�vi
m�
, (98)

where h�vi is the thermally averaged annihilation cross-section,
m� is the mass of the DM particle, ⇢c is the critical density of
the Universe today, g is a degeneracy factor equal to 1/2 for
Majorana particles and 1/4 for Dirac particles (in the following,
constraints will refer to Majorana particles), and the parameter
f (z) indicates the fraction of energy which is absorbed overall
by the gas at redshift z. We note that the presence of the brackets
in h�vi denote a thermal average over the velocity distribution
of particles.

In Eq. (98), the factor f (z) depends on the details of the
annihilation process, such as the mass of the DM particle and
the annihilation channel (see e.g., Slatyer et al. 2009). The func-
tional shape of f (z) can be taken into account using gen-
eralized parameterizations (Finkbeiner et al. 2012; Hutsi et al.
2011). However, as shown in Galli et al. (2011), Giesen et al.
(2012), and Finkbeiner et al. (2012) it is possible to neglect the
redshift dependence of f (z) to first approximation, since current
data shows very little sensitivity to variations of this function.
The e↵ects of DM annihilation can therefore be well parameter-
ized by a single constant parameter, pann, that encodes the de-
pendence on the properties of the DM particles.

We compute here the theoretical angular power in the pres-
ence of DM annihilations, by modifying the RECFAST routine
in the camb code as in Galli et al. (2011) and by making use
of the package CosmoMC for Monte Carlo parameter estimation.
We checked that we obtain the same results by using the CLASS
Boltzmann code (Lesgourgues 2011a) and the Monte Python
package (Audren et al. 2012), with DM annihilation e↵ects cal-
culated either by RECFAST or HyRec (Ali-Haimoud & Hirata
2011), as detailed in Giesen et al. (2012). Besides pann, we sam-
ple the parameters of the base ⇤CDM model and the fore-
ground/nuisance parameters described in Sect. 4.

From Planck+WP we find

pann < 5.4 ⇥ 10�6 m3 s�1 kg�1 (95; Planck+WP). (99)

This constraint is weaker than that found from the full
WMAP9 temperature and polarization likelihood, pann < 1.2 ⇥
10�6 m3s�1kg�1 because the Planck likelihood does not yet in-
clude polarization information at intermediate and high multi-
poles. In fact, the damping e↵ect of DM annihilation on the
CMB temperature power spectrum is highly degenerate with
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Fig. 25. The Planck+WP+highL data combination (samples; colour-coded by the value of H0) partially breaks the geometric degen-
eracy between ⌦m and ⌦⇤ due to the e↵ect of lensing in the temperature power spectrum. These limits are significantly improved
by the inclusion of the Planck lensing reconstruction (black contours). Combining also with BAO (right; solid blue contours) tightly
constrains the geometry to be nearly flat.

In summary, there is no evidence from Planck for any depar-
ture from a spatially flat geometry. The results of Eqs. (68a) and
(68b) suggest that our Universe is spatially flat to an accuracy of
better than a percent.

6.3. Neutrino physics and constraints on relativistic
components

A striking illustration of the interplay between cosmology and
particle physics is the potential of CMB observations to con-
strain the properties of relic neutrinos, and possibly of additional
light relic particles in the Universe (see e.g., Dodelson et al.
1996; Hu et al. 1995; Bashinsky & Seljak 2004; Ichikawa et al.
2005; Lesgourgues & Pastor 2006; Hannestad 2010). In the fol-
lowing subsections, we present Planck constraints on the mass of
ordinary (active) neutrinos assuming no extra relics, on the den-
sity of light relics assuming they all have negligible masses, and
finally on models with both light massive and massless relics.

6.3.1. Constraints on the total mass of active neutrinos

The detection of solar and atmospheric neutrino oscillations
proves that neutrinos are massive, with at least two species being
non-relativistic today. The measurement of the absolute neutrino
mass scale is a challenge for both experimental particle physics
and observational cosmology. The combination of CMB, large-
scale structure and distance measurements already excludes a
large range of masses compared to beta-decay experiments.
Current limits on the total neutrino mass

P
m⌫ (summed over the

three neutrino families) from cosmology are rather model depen-
dent and vary strongly with the data combination adopted. The
tightest constraints for flat models with three families of neutri-
nos are typically around 0.3 eV (95% CL; e.g., de Putter et al.
2012). Since

P
m⌫ must be greater than approximately 0.06 eV

in the normal hierarchy scenario and 0.1 eV in the degener-
ate hierarchy (Gonzalez-Garcia et al. 2012), the allowed neu-
trino mass window is already quite tight and could be closed
further by current or forthcoming observations (Jimenez et al.
2010; Lesgourgues et al. 2013).

Cosmological models, with and without neutrino mass, have
di↵erent primary CMB power spectra. For observationally-
relevant masses, neutrinos are still relativistic at recombina-
tion and the unique e↵ects of masses in the primary power
spectra are small. The main e↵ect is around the first acoustic
peak and is due to the early integrated Sachs-Wolfe (ISW) ef-
fect; neutrino masses have an impact here even for a fixed red-
shift of matter–radiation equality (Lesgourgues & Pastor 2012;
Hall & Challinor 2012; Hou et al. 2012; Lesgourgues et al.
2013). To date, this e↵ect has been the dominant one in con-
straining the neutrino mass from CMB data, as demonstrated in
Hou et al. (2012). As we shall see here, the Planck data move
us into a new regime where the dominant e↵ect is from gravi-
tational lensing. Increasing neutrino mass, while adjusting other
parameters to remain in a high-probability region of parameter
space, increases the expansion rate at z >⇠ 1 and so suppresses
clustering on scales smaller than the horizon size at the non-
relativistic transition (Kaplinghat et al. 2003; Lesgourgues et al.
2006). The net e↵ect for lensing is a suppression of the CMB
lensing potential and, for orientation, by ` = 1000 the suppres-
sion is around 10% in power for

P
m⌫ = 0.66 eV.

Here we report constraints assuming three species of degen-
erate massive neutrinos. At the level of sensitivity of Planck, the
e↵ect of mass splittings is negligible, and the degenerate model
can be assumed without loss of generality.

Combining the Planck+WP+highL data, we obtain an upper
limit on the summed neutrino mass of

X
m⌫ < 0.66 eV (95%; Planck+WP+highL). (69)

The posterior distribution is shown by the solid black curve in
Fig. 26. To demonstrate that the dominant e↵ect leading to the
constraint is gravitational lensing, we remove the lensing infor-
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Marsh et al (2014)

Dark Energy: model discrimination

Forecast precision
of Stage IV survey
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• Overwhelming evidence for dark energy.

• Different probes are orthogonal.

• Modest constraints on the equation of 
state.

• Will it be possible to discriminate between 
models?

Dark Energy: model discrimination
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Ultra light fields: Neutrinos 
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Ultra light fields: Neutrinos (mass) 

Aubourg et al (2014)

Planck 2015
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Ultra light fields: Neutrinos (number) 

Planck 2015
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50

like hidden sectors with low confinement scales. This both opens up interesting phenomenology
associated to the presence of this “dark world” and raises the question of how it managed to escape
being observed so far. We will touch on some of the issues involved in the concluding Section 3.
For now we focus upon the observational signatures of the light axions that we have argued are
generic to string theory once the strong CP problem is solved.

2 Cohomologies from Cosmology

CMB 
Polarization

10-33 4 ! 10-28

Axion Mass in eV

108

Inflated 
Away

Decays

3 ! 10-10

QCD axion
2 ! 10-20

3 ! 10-18

Anthropically Constrained
Matter

Power Spectrum
Black Hole Super-radiance

Figure 1: Map of the Axiverse: The signatures of axions as a function of their mass, assuming
f

a

⇡ M
GUT

and H
inf

⇠ 108 eV. We also show the regions for which the axion initial angles are
anthropically constrained not to over-close the Universe, and axions diluted away by inflation.
For the same value of f

a

we give the QCD axion mass. The beginning of the anthropic mass
region (2 ⇥ 10�20 eV) as well as that of the region probed by density perturbations (4 ⇥ 10�28

eV) are blurred as they depend on the details of the axion cosmological evolution (see Section
2.3). 3 ⇥ 10�18 eV is the ultimate reach of density perturbation measurements with 21 cm line
observations. The lower reach from black hole super-radiance is also blurred as it depends on
the details of the axion instability evolution (see Section 2.5). The region marked as “Decays”,
outlines very roughly the mass range within which we expect bounds or signatures from axions
decaying to photons, if they couple to ~E · ~B. We will discuss axion decays in detail in a companion
paper.

2.1 Discovering the String Axiverse

We now turn to the observational consequences of axions lighter than or around the QCD axion
mass. For simplicity, we keep f

a

fixed at M
GUT

and H
infl

⇠ 0.1 GeV. The initial displacement of
axions heavier than ⇠ 10�20 eV has to be tuned in order for them not to overclose the universe and
axions heavier than 0.1 GeV have been diluted away by inflation. The observational consequences
of the string axiverse are outlined in Figure 1.

We concentrate on three main windows to the axiverse. First, as discussed in Section 2.2
axions of masses between 10�33 eV and 4⇥ 10�28 eV, if they couple to ~E · ~B, cause a rotation in

8

Arvanitaki et al (2009)!

DJEM (2014)!

Ultra light fields: ultra-light axions 
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Marsh et al (2014)

Ultra light fields: ultra-light axions 
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Marsh et al (2014)

Ultra light fields: ultra-light axions 
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• Strong effects from ultra-relativistic fields.

• Tight constraints on fundamental 
parameters.

• Most promising route in the near future.

Ultra light fields
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Mild tension with the CMB

Planck Collaboration: Cosmological parameters

Table 8. Approximate constraints with 68% errors on ⌦m and
H0 (in units of km s�1 Mpc�1) from BAO, with !m and !b fixed
to the best-fit Planck+WP+highL values for the base ⇤CDM
cosmology.

Sample ⌦m H0

6dF . . . . . . . . . . . . . . . . . . . . . . . . . 0.305+0.032
�0.026 68.3+3.2

�3.2
SDSS . . . . . . . . . . . . . . . . . . . . . . . 0.295+0.019

�0.017 69.5+2.2
�2.1

SDSS(R) . . . . . . . . . . . . . . . . . . . . . 0.293+0.015
�0.013 69.6+1.7

�1.5
WiggleZ . . . . . . . . . . . . . . . . . . . . . 0.309+0.041

�0.035 67.8+4.1
�2.8

BOSS . . . . . . . . . . . . . . . . . . . . . . . 0.315+0.015
�0.015 67.2+1.6

�1.5
6dF+SDSS+BOSS+WiggleZ . . . . . . 0.307+0.010

�0.011 68.1+1.1
�1.1

6dF+SDSS(R)+BOSS . . . . . . . . . . . 0.305+0.009
�0.010 68.4+1.0

�1.0
6dF+SDSS(R)+BOSS+WiggleZ . . . . 0.305+0.009

�0.008 68.4+1.0
�1.0

surements constrain parameters in the base ⇤CDM model, we
form �2,

�2
BAO = (x � x

⇤CDM)T C�1
BAO(x � x

⇤CDM), (50)

where x is the data vector, x

⇤CDM denotes the theoretical pre-
diction for the ⇤CDM model and C�1

BAO is the inverse covari-
ance matrix for the data vector x. The data vector is as fol-
lows: DV(0.106) = (457 ± 27) Mpc (6dF); rs/DV(0.20) =
0.1905 ± 0.0061, rs/DV(0.35) = 0.1097 ± 0.0036 (SDSS);
A(0.44) = 0.474 ± 0.034, A(0.60) = 0.442 ± 0.020, A(0.73) =
0.424±0.021 (WiggleZ); DV(0.35)/rs = 8.88±0.17 (SDSS(R));
and DV(0.57)/rs = 13.67±0.22, (BOSS). The o↵-diagonal com-
ponents of C�1

BAO for the SDSS and WiggleZ results are given
in Percival et al. (2010) and Blake et al. (2011). We ignore any
covariances between surveys. Since the SDSS and SDSS(R) re-
sults are based on the same survey, we include either one set of
results or the other in the analysis described below, but not both
together.

The Eisenstein-Hu values of rs for the Planck and WMAP-9
base ⇤CDM parameters di↵er by only 0.9%, significantly
smaller than the errors in the BAO measurements. We can obtain
an approximate idea of the complementary information provided
by BAO measurements by minimizing Eq. (50) with respect to
either ⌦m or H0, fixing !m and !b to the CMB best-fit parame-
ters. (We use the Planck+WP+highL parameters from Table 5.)
The results are listed in Table 819.

As can be seen, the results are very stable from survey to
survey and are in excellent agreement with the base ⇤CDM
parameters listed in Tables 2 and 5. The values of �2

BAO are
also reasonable. For example, for the six data points of the
6dF+SDSS(R)+BOSS+WiggleZ combination, we find �2

BAO =
4.3, evaluated for the Planck+WP+highL best-fit⇤CDM param-
eters.

The high value of ⌦m is consistent with the parameter anal-
ysis described by Blake et al. (2011) and with the “tension” dis-
cussed by Anderson et al. (2013) between BAO distance mea-
surements and direct determinations of H0 (Riess et al. 2011;
Freedman et al. 2012). Furthermore, if the errors on the BAO
measurements are accurate, the constraints on ⌦m and H0 (for
fixed !m and !b) are of comparable accuracy to those from
Planck.

19As an indication of the accuracy of Table 8, the full likelihood
results for the Planck+WP+6dF+SDSS(R)+BOSS BAO data sets give
⌦m = 0.308 ± 0.010 and H0 = 67.8 ± 0.8 km s�1 Mpc�1, for the base
⇤CDM model.

Fig. 16. Comparison of H0 measurements, with estimates of
±1� errors, from a number of techniques (see text for details).
These are compared with the spatially-flat ⇤CDM model con-
straints from Planck and WMAP-9.

The results of this section show that BAO measurements are
an extremely valuable complementary data set to Planck. The
measurements are basically geometrical and free from complex
systematic e↵ects that plague many other types of astrophysical
measurements. The results are consistent from survey to survey
and are of comparable precision to Planck. In addition, BAO
measurements can be used to break parameter degeneracies that
limit analyses based purely on CMB data. For example, from
the excellent agreement with the base ⇤CDM model evident in
Fig. 15, we can infer that the combination of Planck and BAO
measurements will lead to tight constraints favouring ⌦K = 0
(Sect. 6.2) and a dark energy equation-of-state parameter, w =
�1 (Sect. 6.5).

Finally, we note that we choose to use the
6dF+SDSS(R)+BOSS data combination in the likelihood
analysis of Sect. 6. This choice includes the two most accu-
rate BAO measurements and, since the e↵ective redshifts of
these samples are widely separated, it should be a very good
approximation to neglect correlations between the surveys.

5.3. The Hubble constant

A striking result from the fits of the base⇤CDM model to Planck
power spectra is the low value of the Hubble constant, which is
tightly constrained by CMB data alone in this model. From the
Planck+WP+highL analysis we find

H0 = (67.3±1.2) km s�1 Mpc�1 (68%; Planck+WP+highL).(51)

A low value of H0 has been found in other CMB experi-
ments, most notably from the recent WMAP-9 analysis. Fitting
the base ⇤CDM model, Hinshaw et al. (2012) find

H0 = (70.0 ± 2.2) km s�1 Mpc�1 (68%; WMAP-9), (52)

consistent with Eq. (51) to within 1�. We emphasize here that
the CMB estimates are highly model dependent. It is important

30

NGC4258 and UGC at 50 Mpc
have been revised down

Inconsistencies:  Hubble Constant
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Aubourg 2014

Inconsistencies:  Hubble Constant
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Dodelson (2003)

Inconsistencies:  Weak Lensing 
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Inconsistencies:  Weak Lensing 

distortion
 tensor

source distribution
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Inconsistencies:  Weak Lensing 

m

Planck

CFHTLens Heymans et al 2013

Mild inconsistency
with Planck

Planck 2015
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Inconsistencies:  Cluster counts 

Planck 2015
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Inconsistencies:  large angles CMB
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Particle Physics from Cosmology

• Simple flat ΛCDM model still fits (most) data.

• Strong constraints on ultralight fields.

• Some constraints of inflation- are they fundamental?

• Some constraints DE behaviour - are they fundamental? 

• Some inconsistencies- do we need better data?
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